Construct a regular expression, Theory of Computation

Assignment Help:

Given any NFA A, we will construct a regular expression denoting L(A) by means of an expression graph, a generalization of NFA transition graphs in which the edges are labeled with regular expressions rather than just symbols in Σ∪{ε}. We will explain the algorithm using the example of Figure 1.

We begin by adding a new start state s and ?nal state f to the automaton and by extending it to include an edge between every state in Q∪{s} to every state in Q ∪ {f}, including self edges on states in Q. We then consolidate all the edges from a state i to a state j into a single edge, labeled with a regular expression that denotes the set of strings of length 1 or less leading directly from state i to state j in the original automaton. If there was no path directly from i to j in the original automaton the label is ∅. If there were multiple edges (or edges labeled with multiple symbols) the label is the ‘+' of the symbols on those edges (as in the edge from 2 to 1 in the example). There will be an edge from s labeled ε to the original start state and one labeled ∅ to every other state other than f. Similarly, there will be an edge labeled ε from each state in F in the original automaton to state f and one labeled ∅ from those in Q-F to f. The expression graph for the example automaton is given in the right hand side of the ?gure.

The idea, now, is to systematically eliminate the nodes of the transition graph, one at a time, by adding new edges that are equivalent to the paths through that state and then deleting the state and all its incident edges. In general, suppose we are working on eliminating node k. For each pair of states i and j (where i is neither k nor f and j is neither k nor s) there will be a path from i to j through k that looks like:

230_Construct a regular expression.png


Related Discussions:- Construct a regular expression

Binary form and chomsky normal form, Normal forms are important because the...

Normal forms are important because they give us a 'standard' way of rewriting and allow us to compare two apparently different grammars G1  and G2. The two grammars can be shown to

Describe the algorithm and draw the transition diagram, 1. Simulate a TM wi...

1. Simulate a TM with infinite tape on both ends using a two-track TM with finite storage 2. Prove the following language is non-Turing recognizable using the diagnolization

Instantaneous description - recognizable language, De?nition (Instantaneous...

De?nition (Instantaneous Description) (for both DFAs and NFAs) An instantaneous description of A = (Q,Σ, δ, q 0 , F) , either a DFA or an NFA, is a pair h q ,w i ∈ Q×Σ*, where

Decision problems, In Exercise 9 you showed that the recognition problem an...

In Exercise 9 you showed that the recognition problem and universal recognition problem for SL2 are decidable. We can use the structure of Myhill graphs to show that other problems

Myhill-nerode theorem, The Myhill-Nerode Theorem provided us with an algori...

The Myhill-Nerode Theorem provided us with an algorithm for minimizing DFAs. Moreover, the DFA the algorithm produces is unique up to isomorphism: every minimal DFA that recognizes

Problem solving and programming concepts, The Last Stop Boutique is having ...

The Last Stop Boutique is having a five-day sale. Each day, starting on Monday, the price will drop 10% of the previous day’s price. For example, if the original price of a product

what is a turing machine, A Turing machine is a theoretical computing mach...

A Turing machine is a theoretical computing machine made-up by Alan Turing (1937) to serve as an idealized model for mathematical calculation. A Turing machine having of a line of

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd