Concrete to abstract-how mathematical ideas grow, Mathematics

Assignment Help:

Concrete to Abstract :  Mathematics, like all human knowledge, grows out of our concrete experiences. Let us take the example of three-dimensional shapes. Think about how you came to understand the concept of "roundness" and of a sphere. Was your mental process something like the following?

We see all sorts of objects around us. While dealing with them, we notice that some of these things, like a ball, an orange, a water melon, a 'laddu', have the same kind of regularity, namely, a roundness. And so, the notion of 'roundness' gradually develops in our mind. We can separate the objects that are round from those that aren't. We also realise that the property of roundness, common to all the round objects, has nothing to do with the other specific attributes of these objects, like the substance they are made of, their size, or their colour. We gradually separate the idea of 'roundness' from the many concrete things it is abstracted from. On the basis of the essential property of 'roundness', we develop the concept of a sphere. Once we have formed this concept, we don't need to think of a particular round object when we're talking of a sphere. We have successfully abstracted the concept from our concrete experiences.

In a similar way, we learn to abstract the concept of 'redness', say. But there's a major difference between this concept, and mathematical concepts. Firstly, every mathematical concept gives rise to more mathematical concepts. For example, related to the concept of a sphere we generate the concepts of radius, centre, surface area and volume of a sphere.

Secondly, we can think of various purely abstract and formal relationships between the related concepts. For instance, examine the relationship between a sphere and its volume. Irrespective of the size of a sphere or the material it is made of, the relationship is the same. The volume of a sphere depends on its radius in a certain way, regardless of how big or small the sphere is.

Thus, not only can we abstract a mathematical idea from concrete instances, we can also generate more related abstract ideas and study relationships between them in an abstract manner. These abstract mathematical ideas exist in our minds, independent of our concrete experiences that they grew out of. They can generate many more related abstract concepts and relationships amongst themselves. The edifice of ideas and relationships keeps growing, making our world of abstractions larger and larger.

You may like to think of another example of this aspect of the nature of mathematics.

E8) Would you say that the number system developed in this way? If so, how? Let us now consider another way in which mathematics grows.

This is closely related to what we have just been discussing.


Related Discussions:- Concrete to abstract-how mathematical ideas grow

Surface area, Find the amount of sheet metal need to form a conical funnel ...

Find the amount of sheet metal need to form a conical funnel of base radius 30cm with a vertical height of 50cm, allowing for 0.5cm overlap. Find the total surface area?

Math help, Can you help me with what goes into 54

Can you help me with what goes into 54

How far did the ?rst arrow goes, From a fixed point directly in front of th...

From a fixed point directly in front of the center of a bull's eye, Kim aims two arrows at the bull's eye. The first arrow nicks one point on the edge of the bull's eye; the second

Find the initial number of balls, Balls are arranged in rows to form an equ...

Balls are arranged in rows to form an equilateral triangle .The first row consists of one ball, the second two balls and so on.   If 669 more balls are added, then all the balls ca

Advantages of peer interaction in learning maths, Can you think of some mor...

Can you think of some more advantages of peer interaction and child-to child learning? If you agree that children learn a lot from each other, then how can we maximise such oppo

An even number is selected, Let the Sample Space S = {1, 2, 3, 4, 5, 6, 7, ...

Let the Sample Space S = {1, 2, 3, 4, 5, 6, 7, 8}. Suppose each outcome is equally likely. Compute the probability of event E = "an even number is selected".

Find out function is increasing and decreasing, Find out where the followin...

Find out where the following function is increasing & decreasing. A (t ) = 27t 5 - 45t 4 -130t 3 + 150 Solution As with the first problem first we need to take the

Integration, R={(r, ?):1=r= 2cos? ,-p/3= ? =p/3

R={(r, ?):1=r= 2cos? ,-p/3= ? =p/3

Determine rank correlation coefficient, Determine Rank Correlation Coef...

Determine Rank Correlation Coefficient A group of 8 accountancy students are tested in Quantitative Techniques and Law II.  Their rankings in the two tests were as:

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd