Concatenation, Theory of Computation

Assignment Help:

We saw earlier that LT is not closed under concatenation. If we think in terms of the LT graphs, recognizing the concatenation of LT languages would seem to require knowing, while scanning a string in L1 . L2, for instance, when to switch from keeping track of factors for L1 to keeping track of factors from L2.

Assuming that the alphabets were not disjoint, there is (evidently, since LT is not closed under concatenation) no way, in general, to know that. For the recognizable languages, on the other hand, we have the convenience of being able to work with non-determinism. We don't actually have to know when to switch from one automaton to the next. Whenever we get to a point in the string that could possibly be the end of the pre?x that is in L1 we can just allow for a non-deterministic choice of whether to continue scanning for A1 (the machine recognizing L1) or to switch to scanning for A2. Since whenever the string is in L1 .  L2 there will be some correct place to switch and since acceptance by a NFA requires only that there some accepting computation, the combined automaton will accept every string in L1 . L2. Moreover, the combined automaton will accept a string iff there is some point at which it can be split into a string accepted by A1 followed by one accepted by A2: it accepts all and only the strings in L1 . L2.


Related Discussions:- Concatenation

Turing machine , Let ? ={0,1} design a Turing machine that accepts L={0^m ...

Let ? ={0,1} design a Turing machine that accepts L={0^m 1^m 2^m } show using Id that a string from the language is accepted & if not rejected .

Strictly local generation automaton, Another way of interpreting a strictly...

Another way of interpreting a strictly local automaton is as a generator: a mechanism for building strings which is restricted to building all and only the automaton as an inexh

Complement - operations on languages, The fact that SL 2 is closed under i...

The fact that SL 2 is closed under intersection but not under union implies that it is not closed under complement since, by DeMorgan's Theorem L 1 ∩ L 2 = We know that

Finite automata, design an automata for strings having exactly four 1''s

design an automata for strings having exactly four 1''s

How to solve the checking problem, The objective of the remainder of this a...

The objective of the remainder of this assignment is to get you thinking about the problem of recognizing strings given various restrictions to your model of computation. We will w

Context free grammar, A context free grammar G = (N, Σ, P, S)  is in binary...

A context free grammar G = (N, Σ, P, S)  is in binary form if for all productions A we have |α| ≤ 2. In addition we say that G is in Chomsky Normaml Form (CNF) if it is in bi

DFA, designing DFA

designing DFA

Formal language theory, This was one of the ?rst substantial theorems of Fo...

This was one of the ?rst substantial theorems of Formal Language Theory. It's maybe not too surprising to us, as we have already seen a similar equivalence between LTO and SF. But

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd