Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
We saw earlier that LT is not closed under concatenation. If we think in terms of the LT graphs, recognizing the concatenation of LT languages would seem to require knowing, while scanning a string in L1 . L2, for instance, when to switch from keeping track of factors for L1 to keeping track of factors from L2.
Assuming that the alphabets were not disjoint, there is (evidently, since LT is not closed under concatenation) no way, in general, to know that. For the recognizable languages, on the other hand, we have the convenience of being able to work with non-determinism. We don't actually have to know when to switch from one automaton to the next. Whenever we get to a point in the string that could possibly be the end of the pre?x that is in L1 we can just allow for a non-deterministic choice of whether to continue scanning for A1 (the machine recognizing L1) or to switch to scanning for A2. Since whenever the string is in L1 . L2 there will be some correct place to switch and since acceptance by a NFA requires only that there some accepting computation, the combined automaton will accept every string in L1 . L2. Moreover, the combined automaton will accept a string iff there is some point at which it can be split into a string accepted by A1 followed by one accepted by A2: it accepts all and only the strings in L1 . L2.
Theorem The class of recognizable languages is closed under Boolean operations. The construction of the proof of Lemma 3 gives us a DFA that keeps track of whether or not a give
Explain Theory of Computation ,Overview of DFA,NFA, CFG, PDA, Turing Machine, Regular Language, Context Free Language, Pumping Lemma, Context Sensitive Language, Chomsky Normal For
Describe the architecture of interface agency
1. An integer is said to be a “continuous factored” if it can be expresses as a product of two or more continuous integers greater than 1. Example of continuous factored integers
Different types of applications and numerous programming languages have been developed to make easy the task of writing programs. The assortment of programming languages shows, dif
When we study computability we are studying problems in an abstract sense. For example, addition is the problem of, having been given two numbers, returning a third number that is
Find the Regular Grammar for the following Regular Expression: a(a+b)*(ab*+ba*)b.
what is theory of computtion
The Equivalence Problem is the question of whether two languages are equal (in the sense of being the same set of strings). An instance is a pair of ?nite speci?cations of regular
advantaeges of single factor trade
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd