Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
We saw earlier that LT is not closed under concatenation. If we think in terms of the LT graphs, recognizing the concatenation of LT languages would seem to require knowing, while scanning a string in L1 . L2, for instance, when to switch from keeping track of factors for L1 to keeping track of factors from L2.
Assuming that the alphabets were not disjoint, there is (evidently, since LT is not closed under concatenation) no way, in general, to know that. For the recognizable languages, on the other hand, we have the convenience of being able to work with non-determinism. We don't actually have to know when to switch from one automaton to the next. Whenever we get to a point in the string that could possibly be the end of the pre?x that is in L1 we can just allow for a non-deterministic choice of whether to continue scanning for A1 (the machine recognizing L1) or to switch to scanning for A2. Since whenever the string is in L1 . L2 there will be some correct place to switch and since acceptance by a NFA requires only that there some accepting computation, the combined automaton will accept every string in L1 . L2. Moreover, the combined automaton will accept a string iff there is some point at which it can be split into a string accepted by A1 followed by one accepted by A2: it accepts all and only the strings in L1 . L2.
First model: Computer has a ?xed number of bits of storage. You will model this by limiting your program to a single ?xed-precision unsigned integer variable, e.g., a single one-by
Let ? ={0,1} design a Turing machine that accepts L={0^m 1^m 2^m } show using Id that a string from the language is accepted & if not rejected .
The Equivalence Problem is the question of whether two languages are equal (in the sense of being the same set of strings). An instance is a pair of ?nite speci?cations of regular
proof ogdens lemma .with example i am not able to undestand the meaning of distinguished position .
We developed the idea of FSA by generalizing LTk transition graphs. Not surprisingly, then, every LTk transition graph is also the transition graph of a FSA (in fact a DFA)-the one
Can v find the given number is palindrome or not using turing machine
1. Simulate a TM with infinite tape on both ends using a two-track TM with finite storage 2. Prove the following language is non-Turing recognizable using the diagnolization
State & prove pumping lemma for regular set. Show that for the language L={ap |p is a prime} is not regular
how is it important
Let L1 and L2 be CGF. We show that L1 ∩ L2 is CFG too. Let M1 be a decider for L1 and M2 be a decider for L2 . Consider a 2-tape TM M: "On input x: 1. copy x on the sec
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd