Computing change for a given coin system, Mathematics

Assignment Help:

This problem involves the question of computing change for a given coin system. A coin system is defined to be a sequence of coin values v1 < v2 < . . . < vn, such that v1 = 1. For example, in the U.S. coin system we have six coins with values h1, 5, 10, 25, 50, 100i. The question is what is the best way to make change for a given integer amount A.

(a) Let c ≥ 2 be an integer constant. Suppose that you have a coin system where there are n types of coins of integer values v1 < v2 < . . . < vn, such that v1 = 1 and, for 1 < i ≤ n, vi = c · vi-1. (For example, for c = 3 and n = 4, an example would be h1, 3, 9, 27i.) Describe an algorithm which given n, c, and an initial amount A, outputs an n-element vector that indicates the minimum number of coins in this system that sums up to this amount. (Hint: Use a greedy approach.)

(b) Given an initial amount A ≥ 0, let hm1, . . . ,mni be the number of coins output by your  algorithm.

Prove that the algorithm is correct. In particular, prove the following:

(i) For 1 ≤ i ≤ n, mi ≥ 0

(ii) Pn

i=1mi · vi = A

(iii) The number of coins used is as small as possible Prove that your algorithm is optimal (in the sense that of generating the minimum number of coins) for any such currency system.

(c) Give an example of a coin system (either occurring in history, or one of your own invention) for which the greedy algorithm may fail to produce the minimum number of coins for some amount.

Your coin system must have a 1-cent coin.


Related Discussions:- Computing change for a given coin system

Linear equations, A police academy is training 14 new recruits. Some are wo...

A police academy is training 14 new recruits. Some are working dogs and others are police officers. There are 38 legs in all. How many of each type of recruits are there?

What is deductive reasoning, What is Deductive Reasoning ? Geometry is...

What is Deductive Reasoning ? Geometry is based on a deductive structure -- a system of thought in which conclusions are justified by means of previously assumed or proved sta

Find the sum of all natural numbers, Find the sum of all natural numbers am...

Find the sum of all natural numbers amongst first one thousand numbers which are neither divisible 2 or by 5 Ans:    Sum of all natural numbers in first 1000 integers which ar

Find the least number that is divisible by all numbers, Find the  leas...

Find the  least  number that  is  divisible by all  numbers between 1  and  10  (both inclusive). Ans: The required number is the LCM of 1,2,3,4,5,6,7,8,9,10 ∴ LCM = 2  × 2

Wronskian, In the earlier section we introduced the Wronskian to assist us ...

In the earlier section we introduced the Wronskian to assist us find out whether two solutions were a fundamental set of solutions. Under this section we will look at the other app

Decimals, how do u add them together?

how do u add them together?

Systems of equations, Since we are going to be working almost exclusively a...

Since we are going to be working almost exclusively along with systems of equations wherein the number of unknowns equals the number of equations we will confine our review to thes

The median- graphical method -progression , The median - it is a stati...

The median - it is a statistical value which is usually located at the center of a given set of data that has been organized in the order of size or magnitude as illustrating,

Word problem, mark got 15.00 for his birthday he now has 27.00. how much di...

mark got 15.00 for his birthday he now has 27.00. how much did he start with

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd