Computing change for a given coin system, Mathematics

Assignment Help:

This problem involves the question of computing change for a given coin system. A coin system is defined to be a sequence of coin values v1 < v2 < . . . < vn, such that v1 = 1. For example, in the U.S. coin system we have six coins with values h1, 5, 10, 25, 50, 100i. The question is what is the best way to make change for a given integer amount A.

(a) Let c ≥ 2 be an integer constant. Suppose that you have a coin system where there are n types of coins of integer values v1 < v2 < . . . < vn, such that v1 = 1 and, for 1 < i ≤ n, vi = c · vi-1. (For example, for c = 3 and n = 4, an example would be h1, 3, 9, 27i.) Describe an algorithm which given n, c, and an initial amount A, outputs an n-element vector that indicates the minimum number of coins in this system that sums up to this amount. (Hint: Use a greedy approach.)

(b) Given an initial amount A ≥ 0, let hm1, . . . ,mni be the number of coins output by your  algorithm.

Prove that the algorithm is correct. In particular, prove the following:

(i) For 1 ≤ i ≤ n, mi ≥ 0

(ii) Pn

i=1mi · vi = A

(iii) The number of coins used is as small as possible Prove that your algorithm is optimal (in the sense that of generating the minimum number of coins) for any such currency system.

(c) Give an example of a coin system (either occurring in history, or one of your own invention) for which the greedy algorithm may fail to produce the minimum number of coins for some amount.

Your coin system must have a 1-cent coin.


Related Discussions:- Computing change for a given coin system

Determine the general solution reduction of order, Determine the general so...

Determine the general solution to 2t 2 y'' + ty' - 3y = 0 It given that y (t) = t -1 is a solution.  Solution Reduction of order needs that a solution already be iden

Give the proofs in mathematics, Give the Proofs in Mathematics ? 1 Two...

Give the Proofs in Mathematics ? 1 Two-column deductive proof Proof: Statements                                                              Reasons * Start with given c

What is multiplying fractions, What is Multiplying Fractions ? The rule...

What is Multiplying Fractions ? The rule for multiplying fractions is to "multiply across": Multiply the numerators to get the numerator of the answer. Multiply the den

Cylinder - three dimensional spaces, Cylinder The below equation is th...

Cylinder The below equation is the common equation of a cylinder. x 2 /a 2 + y 2 /b 2 = 1 This is known as a cylinder whose cross section is an ellipse.  If a = b we

First order differential equations, In this section we will consider for so...

In this section we will consider for solving first order differential equations. The most common first order differential equation can be written as: dy/dt = f(y,t) As we wil

Direction cosines - vector, Direction Cosines This application of the ...

Direction Cosines This application of the dot product needs that we be in three dimensional (3D) space not like all the other applications we have looked at to this point.

Find the angle of elevation, A 50-foot pole casts a shadow on the ground. ...

A 50-foot pole casts a shadow on the ground. a) Express the angle of elevation θ of the sun as a function of the length s of the shadow. (Hint you may wish to draw this firs

Find all the real solutions to cubic equation, Find all the real solutions ...

Find all the real solutions to cubic equation x^3 + 4x^2 - 10 =0. Use the cubic equation x^3 + 4x^2 - 10 =0 and perform the following call to the bisection method [0, 1, 30] Use

Examples of complex numbers, Following are some examples of complex numbers...

Following are some examples of complex numbers. 3 + 5i                                                 √6 -10i (4/5) + 1           16i                     113 The last t

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd