Computing change for a given coin system, Mathematics

Assignment Help:

This problem involves the question of computing change for a given coin system. A coin system is defined to be a sequence of coin values v1 < v2 < . . . < vn, such that v1 = 1. For example, in the U.S. coin system we have six coins with values h1, 5, 10, 25, 50, 100i. The question is what is the best way to make change for a given integer amount A.

(a) Let c ≥ 2 be an integer constant. Suppose that you have a coin system where there are n types of coins of integer values v1 < v2 < . . . < vn, such that v1 = 1 and, for 1 < i ≤ n, vi = c · vi-1. (For example, for c = 3 and n = 4, an example would be h1, 3, 9, 27i.) Describe an algorithm which given n, c, and an initial amount A, outputs an n-element vector that indicates the minimum number of coins in this system that sums up to this amount. (Hint: Use a greedy approach.)

(b) Given an initial amount A ≥ 0, let hm1, . . . ,mni be the number of coins output by your  algorithm.

Prove that the algorithm is correct. In particular, prove the following:

(i) For 1 ≤ i ≤ n, mi ≥ 0

(ii) Pn

i=1mi · vi = A

(iii) The number of coins used is as small as possible Prove that your algorithm is optimal (in the sense that of generating the minimum number of coins) for any such currency system.

(c) Give an example of a coin system (either occurring in history, or one of your own invention) for which the greedy algorithm may fail to produce the minimum number of coins for some amount.

Your coin system must have a 1-cent coin.


Related Discussions:- Computing change for a given coin system

How many hours will it take for them to be 822 miles apart, Two trains leav...

Two trains leave the same city at the same time, one going east and the other going west. If one train is traveling at 65 mph and the other at 72 mph, how many hours will it take f

The definition of the limit, The Definition of the Limit In this secti...

The Definition of the Limit In this section we will look at the precise, mathematical definition of three types of limits we'll be looking at the precise definition of limits

Non zero sum games- game theory, Non Zero Sum Games Recently there was ...

Non Zero Sum Games Recently there was no satisfactory theory either to describe how people should play non-zero games or to explain how they actually play that game Nigel Ho

Tangent, Tangent, Normal and Binormal Vectors In this part we want to ...

Tangent, Normal and Binormal Vectors In this part we want to look at an application of derivatives for vector functions.  In fact, there are a couple of applications, but they

value of integration , what is the value of integration limit n-> infinity...

what is the value of integration limit n-> infinity [n!/n to the power n]to the power 1/n Solution)  limit n-->inf.    [1 + (n!-n^n)/n^n]^1/n = e^ limit n-->inf.    {(n!-n^n)

Variation and proportion, i am not getting what miss has taught us please w...

i am not getting what miss has taught us please will you will help me in my studies

Topology, Is usual topology on R is comparable to lower limit topology on R...

Is usual topology on R is comparable to lower limit topology on R

Interpretation of the second derivative, Interpretation of the second deriv...

Interpretation of the second derivative : Now that we've discover some higher order derivatives we have to probably talk regarding an interpretation of the second derivative. I

Quantitative, A lobster catcher spends $12 500 per month to maintain a lobs...

A lobster catcher spends $12 500 per month to maintain a lobster boat. He plans to catch an average of 20 days per month during lobster season. For each day, he must allow approx

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd