Computer game zenda, Game Theory

Assignment Help:

Computer Game Zenda

This game was invented by James Andreoni and Hal Varian; see their article, "Pre-Play Contracting in the Prisoners 'Dilemma".The paper also contains some code in C. Zenda is a prisoners' dilemma, but this is concealed behind a facade of playing cards and Pull and Push mouse clicks in such a way that students do not easily figure this out. (They could, from thename and word association, but few are sufficiently widelyread or addicts of the right kind of movies.) Nevertheless, the game is best played during an early week of the semester,before you have treated the dilemma in class.

Make sure you have an even number of students. The program matches them randomly in pairs. Each student sees two cards for herself in the bottom half of her screen, and two cards for the player with whom she is matched in thetop half of her screen. For each student, there is a low cardcalled her pull card, and a high card called her push card.She can use her mouse to click on one of these. If she clicks on the low (pull) card, she gets from a central kitty a number of coins (points) equal to the value of that card. If she clicks on the high (push) card, her opponent gets from the same central kitty a number of coins (points) equal to the value of that card. The objective is to get as many coins for yourself as possible. The two matched in a pair make their choices simultaneously. They do not see each other's choice untilboth have clicked, when the actual transfer of coins takes place. Then new random pairings are formed, and the proce- dure is repeated. Depending on the time available, you can typically play up to 10 rounds of this. (Usually most students figure out after 2 or 3 rounds that pull is their dominant strategy.

The values of the low and high cards a player has overher 10 rounds should be alternated in such a way as to alloweach to get the same aggregate payoff if they play the correct strategies. This evenness is important if the exercisecounts toward the course grade.Then a second phase of the game begins. Here each player has the opportunity to bribe the other into playing Push; it shows how the prisoners' dilemma can be overcome if there is some mechanism by which the players can make crediblepromises. Again randomly matched pairs are formed. Againin each pair each player sees her and her opponent's cards. First each chooses how many coins she promises to pay her opponent if (and only if) the opponent plays Push. These bribes come from the player's own kitty (winnings from thefirst phase) and not from the central kitty. The bribes are put in an escrow box. Once both have set the bribes, each can seethe bribe offered by the other.

Then they play the actual gameof clicking on the cards. When both have clicked, each getsthe points from the central kitty depending on the push orpull choices as before. If your opponent plays Push, she gets the bribe you offered from your escrow box; if your oppo-nent plays Pull, your bribe is returned to you from your escrow box. (The fact that the program resolves this disposition ofthe bribes makes the promise credible.) The bribe game is also played a number of times (typically 10 rounds) with freshrandom matching of pairs for each round. Students quite quickly find the optimal bribing strategy.

You can try different variants (treatments) of the game:allow players to talk to one another or forbid talking, keep one pairing for several rounds to see if tacit cooperation develops, and so on. We append for your information the instructionsgiven at the time of playing the game, and a report and analysis circulated later. 


Related Discussions:- Computer game zenda

Bayesian game and find its bayesian equilibria, Two people are involved in ...

Two people are involved in a dispute. Person 1 does not know whether person 2 is strong or weak; she assigns probability to person 2 being strong. Person 2 is fully informed. Each

State the profit maximization problem of firm, 1. Consider two firms produc...

1. Consider two firms producing an identical product in a market where the demand is described by p = 1; 200 2Y. The corresponding cost functions are c 1 (y 1 ) = y 2 1 and c 2

Game theory equilibrium exercise, Exercise 1 a) Pure strategy nash equi...

Exercise 1 a) Pure strategy nash equilibrium in this case is Not Buy, bad ( 0,0) as no one wants to deviate from this strategy. b) The player chooses buy in the first perio

Auctions, what will be the best strategy for a bidder in an auction compris...

what will be the best strategy for a bidder in an auction comprised of four bidders?

Multiple item auction, Normal 0 false false false EN-US...

Normal 0 false false false EN-US X-NONE X-NONE

Incentive, A payoff offerd as a bequest for someone partaking in some activ...

A payoff offerd as a bequest for someone partaking in some activity that doesn't directly provide her with profit. Often, such incentives are given to beat the ethical hazard drawb

Games with sequential moves:rollback equilibrium, Rollback shows that Boein...

Rollback shows that Boeing chooses peace over war if Airbus enters, so Airbus will enter. Rollback equilibrium entails Airbus playing “Enter” and Boeing playing “Peace if entry”; e

Game, The interaction among rational, mutually aware players, where the cho...

The interaction among rational, mutually aware players, where the choices of some players impacts the payoffs of others. A game is described by its players, every player's methods,

Finding Equilibrium in Game Theory, This is Case of Competitive Games. ...

This is Case of Competitive Games. Player 2 L R Player 1 L (60,40) (70,30) R (65,35) (60,40) Are either have dominant st

Stag hunt , Scenario The French thinker, Jean Jacques Rousseau, presente...

Scenario The French thinker, Jean Jacques Rousseau, presented the subsequent state of affairs. 2 hunters will either jointly hunt a stag (an adult deer and rather massive meal)

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd