Compute the ensemble mean and standard deviation, Electrical Engineering

Assignment Help:

Write three m ?les to generate M ensemble members of length N, for the following three random processes:

i) function v=rp1(M,N);

a=0.02;

b=5;

Mc=ones(M,1)*b*sin((1:N)*pi/N);

Ac=a*ones(M,1)*[1:N];

v=(rand(M,N)-0.5).*Mc+Ac;

ii) function v=rp2(M,N)

Ar=rand(M,1)*ones(1,N);

Mr=rand(M,1)*ones(1,N);

v=(rand(M,N)-0.5).*Mr+Ar;

iii) function v=rp3(M,N)

a=0.5;

m=3;

v=(rand(M,N)-0.5)*m + a;

Try to understand what kind of signal each process generates and thereby decide which process is ergodic and/or stationary.

- Compute the ensemble mean and standard deviation for each process and plot them as a function of time, using 100 members each of length 100, for each process. Comment on the stationarity of each process.

- Generate 4 members of length 1000 of each process, and measure the mean and standard deviation of each member. Hence comment on the ergodicity of each process.

- Write the mathematical description of each of the three stochastic processes. Calculate the theoretical mean and variance for each case and compare the theoretical results with those obtained by the measurements.

c) Repeat a) but with the randn function which generates a random signal with theoretical ly zero mean and unity standard deviation.

d) The autocorrelation function for a statistically stationary random discrete signal may be calculated from

1922_Compute the ensemble mean and standard deviation.png

More formally, the discrete signal is implicitly being assumed to be autocorrelation ergodic, that is, the nature of the random signal x is such that the discrete samples themselves can be used to calculate the autocorrelation function. In a real application, only a ?nite number of samples, N, of x will be available and, therefore, it is necessary to make an assumption upon unknown values of x. Usually, these are assumed to be zero. An unbiased estimate of the autocorrelation function can be calculated from

137_Compute the ensemble mean and standard deviation1.png

Notice that from a length N vector x,a(2 - 1) length estimated autocorrelation function is obtained.

- Employ the xcorr(x,'unbiased') function within MATLAB to calculate the unbiased estimate of the autocorrelation function for a length 1000 random signal generated with the randn function. Display and explain the result, i.e. is it symmetric and, if so, about which point? Use k = -999:999 for the x axis.

Note: To understand the symmetry in the autocorrelation function, draw a simple ?nite random continuous wave (wave ); below that draw the same wave with a time shift (wave ); below that draw the same wave with time shift - (wave ). Compare the common non-zero regions between and , and the common non-zero regions between and . It is seen that the multiple of the two waves in both non-zero regions is the same.

- Explain what is happening at large | T |

Hint: What happens to the number of non-zero terms on the rhs of the equation? Use the axis command to concentrate upon the region | T | 50. Notice the autocorrelation function is essentially zero for non-zero shifts. This is a fundamental property of such a random signal, that is, the autocorrelation function reveals that there is no correlation between shifted versions of x. In practice, this means that for such a random signal, knowledge of one signal sample has no bearing on any of its past or future values.

The samples are said to be uncorrelated.

In theory, a purely random signal will have an autocorrelation function which is a discrete delta function. This shows that there is no correlation (i.e. similarity) between the random signal and a shifted version of it.


Related Discussions:- Compute the ensemble mean and standard deviation

Find the inductor current and voltage, Q. The energy stored in a 2-µH induc...

Q. The energy stored in a 2-µH inductor is given by wL(t) = 9e-2t µJ for t ≥ 0. Find the inductor current and voltage at t = 1 s.

Sketch the phasor diagram of the voltage, Q. The line-to-line voltage of a ...

Q. The line-to-line voltage of a balanced wye connected three-phase source is given as 100 V. Choose V AB as the reference. (a) For the phase sequence A-B-C, sketch the phasor

Find the current flow through a resistor, Q. Find the current flow through ...

Q. Find the current flow through a resistor ? Consider the circuit shown in Figure (a). Reduce the portion of the circuit to the left of terminals a-b to (a) a Thévenin equival

Performance of digital modulation schemes, Hello, Please how do I compare p...

Hello, Please how do I compare performance of a digital modulation scheme with matlab?

Produce a storage scope using peripheral interface control, First section ...

First section Aim: the aim of this project is to produce a storage scope using a PIC. In this project, several samples were taken from an analog signal and stored in the memo

Clipper, design a clipper circuit of a sinsoiudial wave of a peak value 25v...

design a clipper circuit of a sinsoiudial wave of a peak value 25v&minimum value of -12v to make the output voltages of 20&-9v respectively.

Operation - unijunction transistor, Operation - unijunction transistor: ...

Operation - unijunction transistor: Operation : Imagine that the emitter supply voltage is turned biased and a small emitter reverse current flows. Then the intrinsic stand

Power electronics, principle of 120 degree mode of operation of voltage sou...

principle of 120 degree mode of operation of voltage source intverter

Structure of bipolar junction transistor, Structure of Bipolar junction tra...

Structure of Bipolar junction transistor:  A BJT contains three differently doped semiconductor regions that are: emitter region, base region and collector region. These regio

Adi add immediate instruction , ADI Add Immediate  Instruction The  b...

ADI Add Immediate  Instruction The  bit  data specified in the instruction  is  directly  added with  contents of accumulator and result  of operation is stored  in the  accum

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd