Complex roots - second order differential equations, Mathematics

Assignment Help:

We will be looking at solutions to the differential equation, in this section

ay′′ + by′ + cy = 0

Wherein roots of the characteristic equation,

ar2 + br + c = 0

Those are complicated roots in the form,

r12 = λ + µi

Here, recall that we arrived at the characteristic equation through assuming that each solution to the differential equation will be of the type

y (t ) = ert

Plugging our two roots in the general form of the solution provides the subsequent solutions to the differential equation.

66_Complex Roots.png

Here, these two functions are "nice enough" for the form the general solution. We do have a problem though. As we started along with only real numbers in our differential equation we would like our solution to only include real numbers. The two solutions above are complicated and thus we would like to find our hands on a couple of solutions as "nice enough" obviously, which are real.

To do this we will require Euler's Formula.

eiq = cosq+ i sinq

A nice variant of Euler's Formula which we'll want is,

eiq = cos(-q) + i sin(-q) = cosq - i sin q

Currently, split up our two solutions into exponentials which only have real exponents and then exponentials which only have imaginary exponents. After that use Euler's formula, or its variant use to rewrite the second exponential as:

y1(t) = elt eiµt = elt (cos(µ t)) + i sin (µt))

Y2(t) = elt e-iµt = elt (cos(µ t)) - i sin (µt))

This doesn't remove the complex nature of the solutions, although this does put the two solutions in a form that we can remove the complex parts.

Recall from the fundamentals section which if two solutions are "nice enough" so any solution can be written like a combination of the two solutions.  Convertselyu,

y (t ) = c1 y1 (t ) + c2 y2 (t) will also be a solution.

By using this let's see that if we add the two solutions together we will attain.

y1(t) + Y2(t) = 2elt cos(µ t)

It is a real solution and just to remove the extraneous 2 let's divide everything through a 2.  It gives the first real solution which we're after.

µ (t) = ½ y1(t) + ½ y2 (t) = elt cos(µ t)

Notice there that this is just equal to taking

c1  = c2 = ½

Here, we can reach a second solution in a same manner. Here we subtract the two original solutions to find out.

y1(t) - Y2(t) = 2ielt sin(µ t)

On the surface which doesn't show to fix the problem as the solution is until now complex.  Though, upon learning that the two constants, c1 and c2 can be complex numbers so we can reach a real solution by dividing this through 2i. It is equal to taking,

c1 = 1/2i, c2 = -(1/2i)

Our second solution will after that be,

n (t) = (1/2i) y1(t) - ((1/2i) y2(t)) = elt sin (µt)

We here have two solutions as we'll leave this to you to verify that they are actually solutions to the differential equation.

µ(t) = elt cos (µt), and   n (t) = elt sin (µt)

This also turns out that these two solutions are "nice enough" to make a general solution.

Thus, if the roots of the characteristic equation occur to be, r12 = l+mI the differential equation is,

y(t) = c1 elt cos (µt)+ c elt sin (µt)


Related Discussions:- Complex roots - second order differential equations

Find extrema & relative extrema f ( x ) = x3 on [-2, Recognizes the absolut...

Recognizes the absolute extrema & relative extrema for the given function.                                                    f ( x ) = x 3      on        [-2, 2] Solution :

Fraction, sarah has 12 gel pen. she gave 3/4. how many she have

sarah has 12 gel pen. she gave 3/4. how many she have

How long will he have to ride to burn 750 calories, Jeff burns 500 calories...

Jeff burns 500 calories per hour bicycling. How long will he have to ride to burn 750 calories? To find out the number of hours required to burn 750 calories, divide 750 throug

Prove that the height of the cloud , HE IGHTS AND DISTANCES If the ...

HE IGHTS AND DISTANCES If the angle of elevation of cloud from a point 'h' meters above a lake is α and the angle of depression of its reflection in the lake is  β , prove

Statistical estimation, Statistical estimation This is the procedure of...

Statistical estimation This is the procedure of using statistic to estimate a population parameter This is divided into point estimation whereas an estimate of a population

Eometyr, Lines EF and GH are graphed on this coordinate plane. Which point ...

Lines EF and GH are graphed on this coordinate plane. Which point is the intersection of lines EF and GH?

Binding constraints for the original linear program model, A toy company pr...

A toy company produces 2 models of water guns: spray king and zapper. They are manufactured in batches for easier packaging and sale. Two of the limiting resources are 1200 pounds

Evaluate the integral - trig substitutions, Example of Trig Substitutions ...

Example of Trig Substitutions Evaluate the subsequent integral. ∫ √((25x 2 - 4) / x) (dx) Solution In this type of case the substitution u = 25x 2 - 4 will not wo

Simple derivatives, Simple derivatives Example   Differentiate followin...

Simple derivatives Example   Differentiate following.  (5x 3   - 7 x + 1) 5 ,[ f ( x )] 5 ,[ y ( x )] 5 Solution: Here , with the first function we're being asked to

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd