Complex root - fundamental set of solutions, Mathematics

Assignment Help:

Example: Back into the complex root section we complete the claim that

y1 (t ) = elt cos(µt)        and      y2(t) = elt sin(µt)

Those were a basic set of solutions.  Prove that they actually are.

Solution

Thus, to prove this we will require to take find the Wronskian for these two solutions and show that this isn't zero.

1105_Complex root - fundamental set of solutions.png

= elt cos(µt)( lelt sin(µt) + µ elt cos(µt)) - elt sin(µt)( lelt cos(µt) - µ elt sin(µt))

= µ e2lt cos2(µt) + µ e2lt sin2(µt)

= µ e2lt( cos2(µt) + sin2(µt))

= µ e2lt

Here, the exponential will never be zero and µ ≠ 0 whether it were we wouldn't have complex roots and so W ≠ 0. Thus, these two solutions are actually a fundamental set of solutions and hence the general solution in this case is. As:

 y (t ) = c1elt cos (mt ) + c2eltsin (mt)


Related Discussions:- Complex root - fundamental set of solutions

How tall was peter when he turned 15, Peter was 60 inches tall on his thirt...

Peter was 60 inches tall on his thirteenth birthday. By the time he turned 15, his height had increased 15%. How tall was Peter when he turned 15? Find 15% of 60 inches and add

Transportation problems vogel approximation method, if there is a tie betwe...

if there is a tie between two penalties then how to make allocations?

Non zero sum games- game theory, Non Zero Sum Games Recently there was ...

Non Zero Sum Games Recently there was no satisfactory theory either to describe how people should play non-zero games or to explain how they actually play that game Nigel Ho

Show trigonometric functions on a graph, Q. Show Trigonometric Functions on...

Q. Show Trigonometric Functions on a Graph? Ans. By discussing the trig functions with respect to an angle in a right-angle triangle, we have only considered angles betwee

What is the cost to generate, The production costs per week for generating ...

The production costs per week for generating x widgets is given by, C ( x ) = 500 + 350 x - 0.09 x 2 ,         0 ≤ x ≤ 1000 Answer following questions.  (a) What is the c

Right-handed limit, Right-handed limit We say provided we can m...

Right-handed limit We say provided we can make f(x) as close to L as we desire for all x sufficiently close to a and x>a without in fact letting x be a.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd