Complex numbers from the eigenvector and the eigenvalue, Mathematics

Assignment Help:

Complex numbers from the eigenvector and the eigenvalue.

Example1: Solve the following IVP.

2144_Complex numbers from the eigenvector and the eigenvalue.png

We first require the eigenvalues and eigenvectors for the given matrix.

1679_Complex numbers from the eigenvector and the eigenvalue1.png

= l2 + 27

l1,2 = + 3 √(3i)

Therefore, now that we have the eigenvalues recall which we only need to determine the eigenvector for one of the eigenvalues as we can determine the second eigenvector for free from the first eigenvector as:

l1 =  3 √(3i),

We have to to solve the subsequent system.

199_Complex numbers from the eigenvector and the eigenvalue2.png

By using the first equation we find,

(3 - 3 √(3i)) h1-  9h2 = 0,

h2 = 1/3 (1 - (√(3i))) h1

Therefore, the first eigenvector is,

144_Complex numbers from the eigenvector and the eigenvalue3.png

h1 = 3

While finding the eigenvectors during these cases ensures that the complex number appears in the numerator of any fractions as we'll require this in the numerator later on.  Also attempt to clear out any fractions by suitably picking the constant. It will make our life simple down the road.

 Here, the second eigenvector is,

585_Complex numbers from the eigenvector and the eigenvalue4.png

Though, as we will see we won't require this eigenvector.

The solution which we get from the first eigenvalue and eigenvector is,

452_Complex numbers from the eigenvector and the eigenvalue5.png

Therefore, as we can notice there are complex numbers in both the exponential and vector that we will require to get rid of in order to use that as a solution. Recall from the complex roots section of the second order differential equation section which we can use Euler's formula to find the complex number out of the exponential. Doing it, we get

2396_Complex numbers from the eigenvector and the eigenvalue6.png

The subsequent step is to multiply the cosines and sines in the vector.

61_Complex numbers from the eigenvector and the eigenvalue7.png

Here combine the terms along with an "i" in them and split such terms off from those terms that don't include an "i". Also factor the "i" out of that vector.

1030_Complex numbers from the eigenvector and the eigenvalue8.png

= u?(t) +v?(t)

Here, it can be demonstrated as u?(t) and v?(t)are two linearly independent solutions to the system of differential equations. It means that we can utilize them to form a general solution and both they are real solutions.

Therefore, the general solution to a system along with complex roots is,

x? (t) = c1u?(t) +c2v?(t)

Here u?(t) and v?(t)are found by writing the first solution as:

x? (t) = u?(t) + i v?(t)

For our system so, the general solution is,

1330_Complex numbers from the eigenvector and the eigenvalue9.png

We now require applying the initial condition to it to find the constants,

32_Complex numbers from the eigenvector and the eigenvalue10.png

This leads to the subsequent system of equations to be solved,

3c1 = 2;

c1 + √3c2 = -4;

By solving both equations we get:

c1 = (2/3) and c2 = (14/3√3)

The actual solution is, so,

557_Complex numbers from the eigenvector and the eigenvalue11.png


Related Discussions:- Complex numbers from the eigenvector and the eigenvalue

Remainder when 7^103 is divided by 24 , Find the remainder when 7^103 is di...

Find the remainder when 7^103 is divided by 24 Solution) we know by the concept of mod that.....   49 is congruent to 1 mod 24(means if 1 is subtracted fom 49 u get 48 which is

Calculate the amplitude of trigonometry function, Consider the trigonometri...

Consider the trigonometric function f(t) = -3 + 4 cos(Π/ 3 (t - 3/2 )). (a) What is the amplitude of f (t)? (b) What is the period of f(t)? (c) What are the maximum and mi

Stuck on this, I need help on radical notation for a homework assignment I'...

I need help on radical notation for a homework assignment I''m really confused on it. Can I get help?

Envision math common core, how do i write a conjecture about the sum of two...

how do i write a conjecture about the sum of two negative integers.

Properties of exponential form, Properties 1.   The domain of the logar...

Properties 1.   The domain of the logarithm function is (0, ∞ ) .  In other terms, we can just plug positive numbers into a logarithm! We can't plug in zero or a negative numbe

Interval of convergence - sequences and series, Interval of Convergence ...

Interval of Convergence After that secondly, the interval of all x's, involving the endpoints if need be, for which the power series converges is termed as the interval of conv

Integration, what is integration and how is it important

what is integration and how is it important

Calculate the probability, Data collected from the STATS 10x class survey o...

Data collected from the STATS 10x class survey one semester included responses to questions on the number of different sexual partners and on the number of pairs of shoes the stude

rules for solving linear in-equations - linear algebra, Explain what are t...

Explain what are the Rules for solving linear in-equations?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd