Complex numbers, Mathematics

Assignment Help:

Complex Numbers

In the radicals section we noted that we won't get a real number out of a square root of a negative number.  For example √-9 isn't a real number as there is no real number which we can square & get -ve  9.

We now also saw that if a and b were both positive then √(ab) = √a√b .For a second let's forget that limitation and do the following.

√-9 =498_Complex Numbers.png = √9 √ -1 = 3 √-1

 Now, √-1 is not a real number, however if you think about it we can do this for any square root of a negative number.  For example,

√-100 =√100√-1=10√-1

√-5=√5√-1

√-290=√290√-1 etc.

Thus, even if the number isn't a perfect square still we can always reduce the square root of a -ve number down to the square root of a +ve number (which we or a calculator can deal with) times √-1 .

Thus, if we only had a way to deal with √-1 we could really deal with square roots of negative numbers.  Well the reality is that, at this level, there only isn't any way to deal with

√-1. Thus rather than dealing with it we will "make it go away" so to speak using the following definition.

                                               i =√-1

Note that if we square both of sides of this we get,

                                             i2  = -1

It will be significant to remember this later on. It shows that, in some way, i is the only "number" which we can square and acquire a negative value.

By using this definition all the square roots above become,

√-9 = 3i                              √-100=10i

√-5=√5i                              √-290 = √290 i

These all are examples of complex numbers.


Related Discussions:- Complex numbers

Inverse cosine, Inverse Cosine : Now see at inverse cosine.  Following is ...

Inverse Cosine : Now see at inverse cosine.  Following is the definition for the inverse cosine.                         y = cos -1 x       ⇔ cos y = x                   for

Compute the double integral - triangle with vertices, 1) let R be the trian...

1) let R be the triangle with vertices (0,0), (pi, pi) and (pi, -pi). using the change of variables formula u = x-y and v = x+y , compute the double integral (cos(x-y)sin(x+y) dA a

What is the value of x in probability , A bag contains 8 red balls and x bl...

A bag contains 8 red balls and x blue balls, the odd against drawing a blue ball are 2: 5. What is the value of x?                                                               (An

Fermat''s little theorem, 1. How many closed necklaces of length 7 can be m...

1. How many closed necklaces of length 7 can be made with 3 colors? (notice that 7 is a prime) 2. How many closed necklaces of length 10 can be made with 3 colors (this is di erent

Probability, Ratio of successes in 5 independent trials to the probability ...

Ratio of successes in 5 independent trials to the probability of successes in two independent trials is 1/4. What is the probability of 4 successes in 6 independent trials?

How to multiply two fractions, Q. How to Multiply two Fractions? Multip...

Q. How to Multiply two Fractions? Multiplying fractions is really easy! The rule is: "multiply across"- You multiply the numerators, and you multiply the denominators.

Graph, Graph A graph G = (V, E) contains a (finite) set that is denote...

Graph A graph G = (V, E) contains a (finite) set that is denote by V, or by V(G) if one wishes to make clear which graph is under consideration, and a collection E, or E(G), o

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd