Complex eigenvalues, Mathematics

Assignment Help:

It is the last case that we need to take a look at. Throughout this section we will look at solutions to the system,

x?' = A x?

Here the eigenvalues of the matrix A are complex. By using complex eigenvalues we are going to have similar problem that we had back while we were looking at second order differential equations. We need our solutions to only have real numbers in them, though as our solutions to systems are of the form,

x?1 = ?h elt

We are going to contain complex numbers come in our solution from both the eigenvector and the eigenvalue. Getting rid of the complex numbers now will be same to how we did this back in the second order differential equation case, although will include a little more work this time around. It's simple to see how to do it in an example.


Related Discussions:- Complex eigenvalues

Bernoulli differential equations, In this case we are going to consider dif...

In this case we are going to consider differential equations in the form, y ′ +  p   ( x ) y =  q   ( x ) y n Here p(x) and q(x) are continuous functions in the

Sequences, what is the answer to 2.1 to 4.2

what is the answer to 2.1 to 4.2

Real Analysis/Advanced Calculus (Needs to be a full proof), Both need to be...

Both need to be a full page, detailed proof. Not just a few lines of proof. (1) “Every convergent sequence contains either an increasing, or a decreasing subsequence (or possibly

Solving an equation problems, Temperature: On one day in Fairfield, Montana...

Temperature: On one day in Fairfield, Montana the temperature dropped 80 degree fahrenheit from noon to midnight. If the temperature at midnight was -21 degree fahrenheit, write an

Descrbe about arithmetic and geometric sequences, Descrbe about Arithmetic ...

Descrbe about Arithmetic and Geometric Sequences? When numbers are listed according to a particular pattern, we call the list a sequence. In a sequence, the numbers are separat

Addition, #questiowhat is 1+1n..

#questiowhat is 1+1n..

Find out the greater of two consecutive positive is 143, Find out the great...

Find out the greater of two consecutive positive odd integers whose product is 143. Let x = the lesser odd integer and let x + 2 = the greater odd integer. Because product is a

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd