Complex eigenvalues, Mathematics

Assignment Help:

It is the last case that we need to take a look at. Throughout this section we will look at solutions to the system,

x?' = A x?

Here the eigenvalues of the matrix A are complex. By using complex eigenvalues we are going to have similar problem that we had back while we were looking at second order differential equations. We need our solutions to only have real numbers in them, though as our solutions to systems are of the form,

x?1 = ?h elt

We are going to contain complex numbers come in our solution from both the eigenvector and the eigenvalue. Getting rid of the complex numbers now will be same to how we did this back in the second order differential equation case, although will include a little more work this time around. It's simple to see how to do it in an example.


Related Discussions:- Complex eigenvalues

Problems related to applying operations in learning maths, PROBLEMS RELATED...

PROBLEMS RELATED TO APPLYING OPERATIONS :  Some of us were testing Class 4 children with addition and subtraction problems. We gave them sums that were written horizontally and th

External division of section formula, give me the derivation of external di...

give me the derivation of external division of sectional formula using vectors

Intergration, Functional and variations.Block III, Consider the functiona...

Functional and variations.Block III, Consider the functional S[y]=?_1^2 v(x^2+y'')dx , y(1)=0,y(2)=B Show that if ?=S[y+eg]-S[y], then to second order in e, ?=1/2 e?_1^2¦?g^'

Linear programming, function [x, z] = readSolution(tableau, basis)

function [x, z] = readSolution(tableau, basis)

Lim x, Q. lim x tends to 0 (5 tanx sinx upon x square) here ( ) this bracke...

Q. lim x tends to 0 (5 tanx sinx upon x square) here ( ) this bracket indicates greatest integer function Ans: You can calculate the limit of this function using basic concept of

Series - convergence or divergence, Series - Convergence/Divergence In ...

Series - Convergence/Divergence In the earlier section we spent some time getting familiar with series and we briefly explained convergence and divergence.  Previous to worryin

Pair of straight line, show that one of the straight lines given by ax2+2hx...

show that one of the straight lines given by ax2+2hxy+by2=o bisect an angle between the co ordinate axes, if (a+b)2=4h2

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd