Complex eigenvalues, Mathematics

Assignment Help:

It is the last case that we need to take a look at. Throughout this section we will look at solutions to the system,

x?' = A x?

Here the eigenvalues of the matrix A are complex. By using complex eigenvalues we are going to have similar problem that we had back while we were looking at second order differential equations. We need our solutions to only have real numbers in them, though as our solutions to systems are of the form,

x?1 = ?h elt

We are going to contain complex numbers come in our solution from both the eigenvector and the eigenvalue. Getting rid of the complex numbers now will be same to how we did this back in the second order differential equation case, although will include a little more work this time around. It's simple to see how to do it in an example.


Related Discussions:- Complex eigenvalues

Evaluate the integral, Example:   If c ≠ 0 , evaluate the subsequent integr...

Example:   If c ≠ 0 , evaluate the subsequent integral. Solution Remember that you require converting improper integrals to limits as given, Here, do the integ

Oscar sold 2 glasses of milk for each 5 sodas he sold, Oscar sold 2 glasses...

Oscar sold 2 glasses of milk for each 5 sodas he sold. If he sold 10 glasses of milk, how many sodas did he sell? Set up a proportion along with milk/soda = 2/5 = 10x. Cross mu

What is the connecticut sales tax on this item, Connecticut state sales tax...

Connecticut state sales tax is 6%. Lucy purchases a picture frame in which costs $10.50 What is the Connecticut sales tax on this item? Find out 6% of $10.50 by multiplying $10

Solve the form x2 - bx - c in factoring polynomials, Solve The form x 2 -...

Solve The form x 2 - bx - c in  Factoring Polynomials ? This tutorial will help you factor quadratics that look something like this: x 2 - 11x - 12 (No lead coefficient

Find prime implicants, Let E = xy + y't + x'yz' + xy'zt', find (a)   Pri...

Let E = xy + y't + x'yz' + xy'zt', find (a)   Prime implicants of E,  (b)  Minimal sum for E.  Ans:  K -map for following boolean expression is given as: Prime implic

Find the sum of given equation upto n limit, Find the sum of (1 - 1/n ) + (...

Find the sum of (1 - 1/n ) + (1 - 2/n ) + (1 - 3/n ) ....... upto n terms. Ans: (1 - 1/n ) + (1 - 2/n ) - upto n terms   ⇒[1+1+.......+n terms] - [ 1/n + 2/n +....+

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd