Completely factored polynomial, Mathematics

Assignment Help:

Factoring polynomials

Factoring polynomials is done in pretty much the similar manner.  We determine all of the terms which were multiplied together to obtain the given polynomial. Then we try to factor each of the terms we found in the first step. This continues till we just can't factor anymore.

Completely factored polynomial

 While we can't do any more factoring we will say that the polynomial is completely factored.

Here are some examples.

x2 -16 = ( x + 4) ( x - 4)

 

It is completely factored as neither of the two factors on the right can be factored further.

Similarly

                      x4 -16 = ( x2 + 4)( x2 - 4)

is not completely factored as the second factor can be factored further.  Notice that the first factor is completely factored.  Here is the complete factorization of this polynomial.

                                             x4 -16 = ( x2 + 4)( x + 2)( x - 2)

The reason of this section is to familiarize ourselves along several techniques for factoring polynomials.


Related Discussions:- Completely factored polynomial

Percentage, a washing machine costs $640 plus an installation charge of 7.5...

a washing machine costs $640 plus an installation charge of 7.5% what is the totalcost?

Change of base of logarithms, Change of base: The final topic that we have...

Change of base: The final topic that we have to look at in this section is the change of base formula for logarithms. The change of base formula is,

Geometry, how much congruent sides does a trapezoid have

how much congruent sides does a trapezoid have

Population problem - nonhomogeneous systems, The next kind of problem seems...

The next kind of problem seems as the population problem. Back in the first order modeling section we looked at several population problems. In such problems we noticed a single po

Projections - vector, Projections The good way to understand projection...

Projections The good way to understand projections is to see a couple of diagrams. Thus, given two vectors a → and b → we want to find out the projection of b → onto a → . T

Polynomials, give an example of a binomial of degree 27?

give an example of a binomial of degree 27?

Distinct eigenvalues-sketching the phase portrait, Sketch the phase portrai...

Sketch the phase portrait for the given system. Solution : From the last illustration we know that the eigenvectors and eigenvalues for this system are, This tu

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd