Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Factoring polynomials
Factoring polynomials is done in pretty much the similar manner. We determine all of the terms which were multiplied together to obtain the given polynomial. Then we try to factor each of the terms we found in the first step. This continues till we just can't factor anymore.
Completely factored polynomial
While we can't do any more factoring we will say that the polynomial is completely factored.
Here are some examples.
x2 -16 = ( x + 4) ( x - 4)
It is completely factored as neither of the two factors on the right can be factored further.
Similarly
x4 -16 = ( x2 + 4)( x2 - 4)
is not completely factored as the second factor can be factored further. Notice that the first factor is completely factored. Here is the complete factorization of this polynomial.
x4 -16 = ( x2 + 4)( x + 2)( x - 2)
The reason of this section is to familiarize ourselves along several techniques for factoring polynomials.
Find the normalized differential equation which has {x, xe^x} as its fundamental set
If the areas of two sections of a garden are 6a + 2 and 5a, what is the difference among the areas of the two sections within terms of a? Because the question asks for the diff
two circle of radius of 2cm &3cm &diameter of 8cm dram common tangent
Suppose A and B be two non-empty sets then every subset of A Χ B describes a relation from A to B and each relation from A to B is subset of AΧB. Normal 0 fals
(p:4:3p
prove that cos(a)/1-sin(a)=tan(45+A/2)
Solve the subsequent LP problem graphically through enumerating the corner points. MAX: 3X1 + 4X2 Subject to: X1 12 X2 10
i need homework help
If d is the HCF of 30, 72, find the value of x & y satisfying d = 30x + 72y. (Ans:5, -2 (Not unique) Ans: Using Euclid's algorithm, the HCF (30, 72) 72 = 30 × 2 + 12
Prove that one of every three consecutive integers is divisible by 3. Ans: n,n+1,n+2 be three consecutive positive integers We know that n is of the form 3q, 3q +1, 3q +
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd