Comparison test - sequences and series, Mathematics

Assignment Help:

Comparison Test

Assume that we have two types of series ∑an and ∑bn with an, bn ≥ 0 for all n and an ≤ bn for all n. 

Then,

A.  If ∑bn is convergent then this is ∑an.

B.  If ∑an is divergent then this is ∑bn.

Alternatively, we have two series of positive terms and the terms of one of the series are all time larger than the terms of the other series. After that if the larger series is convergent the smaller series must as well be convergent.  Similarly, if the smaller series is divergent as compared to the larger series must as well be divergent. 

Note: That in order to apply this test we require both series to start at similar place.


Related Discussions:- Comparison test - sequences and series

Arithmetic mean, When three quantities are in A.P., then the middle...

When three quantities are in A.P., then the middle one is said to be the arithmetic  mean of the other two. That is, if a, b and c are in A.P., then b is th

General solution to a differential equation, The general solution to a diff...

The general solution to a differential equation is the most common form which the solution can take and does not take any initial conditions in account. Illustration 5: y(t) =

Standard basis vectors - calculus, Standard Basis Vectors The vector th...

Standard Basis Vectors The vector that is, i = (1, 0,0) is called a standard basis vector.  In three dimensional (3D) space there are three standard basis vectors, i → = (1

Utilizes the definition of the limit to prove the given limi, Utilizes the ...

Utilizes the definition of the limit to prove the given limit. Solution In this case both L & a are zero.  So, let ε 0 so that the following will be true. |x 2 - 0|

Parallelogram, The base and corresponding altitude of a parallelogram are 1...

The base and corresponding altitude of a parallelogram are 10 cm and 12 cm reap. If the other altitude is 8 cm , find the length of the other pair of parallel side

Answer, #questi0+50x1-60-60x0+10on..

#questi0+50x1-60-60x0+10on..

Limits at infinity, Limits At Infinity, Part I : In the earlier section w...

Limits At Infinity, Part I : In the earlier section we saw limits which were infinity and now it's time to take a look at limits at infinity.  Through limits at infinity we mean

Mathematical statements are unambiguous- nature of math, Mathematical State...

Mathematical Statements Are Unambiguous :  Consider any mathematical concept that you're familiar with, say, a sphere. The definition of a sphere is clear and precise. Given any o

Negative skewness-measure of central tendency, Negative Skewness It i...

Negative Skewness It is an asymmetrical curve whether the long tail extends to the left NB: In developed countries this frequency curve for the age distribution is charact

Continuous compounding, If r per annum is the rate at which the princ...

If r per annum is the rate at which the principal A is compounded annually, then at the end of k years, the money due is          Q = A (1 + r) k Suppose

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd