coalitional game and matching markets, Game Theory

Assignment Help:
1. This question and the next is based on the following description.
Consider the coalitional game (referred to as Game 1) given by: N = {1,2,3,4};
v(N) = 3, v{i} = 0, i = 1,...,4, v{j,4} = 0, j = 1,2,3,
v(S) = 1 for all other coalitions S.
In Game 1,
a) players 1, 3 and 4 are substitutes.
b) players 2 is a dummy player.
c) players 1, 2 and 3 are substitutes.
d) player 4 is a dummy player.
e) None of the above.
2. In Game 1, player 1’s Shapley value is
a) 5/6.
b) 11/12.
c) 1/6.
d) 1/4.
e) None of the above.
3. In Game 1, player 4’s Shapley value is
a) 1/4.
b) 1/2.
c) 1/6.
d) 5/6.
e) None of the above.
4. Consider the two-sided matching model in which a set of three men M = {m1,m2,m3} and a set of three women W = {w1,w2,w3} have strict preferences over members of the opposite sex, given by
m1 : w2,w1,w3; w1 : m1,m3,m2
m2 : w1,w2,w3; w2 : m3,m1,m2
m3 : w1,w2,w3; w3 : m1,m2,m3.
The men ?nd all the women acceptable and the women ?nd all the men acceptable.
a) The men-proposing (M-proposing) and the women-proposing (W-proposing) Deferred Ac-ceptance Algorithms (DAAs) lead to the same core-stable matching for this example.
b) The M-proposing DAA matches m2 with w2 while the the W-proposing DAA matches m2 with w3.
c) Each of m1 and m2 strictly prefers his M-proposing match to his W-proposing match.
d) Each of w1, w2 and w3 strictly prefers her W-proposing match to her M-proposing match.
e) None of the above.
5. Consider the problem of matching a set of four students {i1,i2,i3,i4} to a set of three schools {s1,s2,s3}, where school s1 has a quota (or capacity) of 2 students each and schools s2 and s3 have a quota of 1 student each. Each student has a strict preference ranking over the schools and each school has a priority order for the students that is determined by a central authority. Each student’s preference and each school’s (strict) priority order for each student are given below
i1 : s3, s1, s2 s1 : i1, i2, i3, i4
i2 : s2, s1, s3 s2 : i1, i2, i3, i4
i3 : s1, s3, s2 s3 : i3, i1, i2, i4
i4 : s1, s2, s3
Applying the Top Trading Cycle Algorithm (TTCA) to this school choice problem leads to
a) i1 matched to s3, i2 to s1 and i3 to s4.
b) i1 matched to s3, i2 to s1 and i4 to s1.
c) i2 matched to s3, i3 to s2 and i4 to s1.
d) i1 matched to s3, i2 to s1 and i4 to s2.
e) None of the above.

Related Discussions:- coalitional game and matching markets

First worth auction, An auction during which the bidder who submitted the v...

An auction during which the bidder who submitted the very best bid is awarded the item being sold and pays a worth equal to the number bid. Alternately, in a very procurement aucti

Extensive games with sumultaneous moves, consider the three player game in ...

consider the three player game in question 2 in assignment 1. Assume now that player 3 moves first. Players 1 and 2

Combination of sequential and simultanous game, To give Mom a day of rest,...

To give Mom a day of rest, Dad Plans to take his two children, Bart and Cassie, on an outing on Sunday.Bart prefers to go to the amusement park (A), Whereas Cassie prefers to go to

Swertres computation, please compute this number 885 for the swertres lotto...

please compute this number 885 for the swertres lotto game.

Order condition for identification, This condition is based on a counting ...

This condition is based on a counting rule of the variables included and excluded from the particular equation. It is a necessary but no sufficient condition for the identi

Find a bayesian nash equilibrium, In Bontemps, Louisiana there are only two...

In Bontemps, Louisiana there are only two places to spend time: Merlotte's bar and Fangtasia. Sookie and Eric have made plans to spend Friday night together, but they never decided

Draw the strategic form game - nash equilibrium, 1. Consider a two-player g...

1. Consider a two-player game where player A chooses "Up," or "Down" and player B chooses "Left," "Center," or "Right". Their payoffs are as follows: When player A chooses "Up" and

Game playing in class:adding numbers—win at 100, GAME PLAYING IN CLASS GAME...

GAME PLAYING IN CLASS GAME 1 Adding Numbers—Win at 100 This game is described in Exercise 3.7a. In this version, two players take turns choosing a number between 1 and 10 (inclus

Non-cooperative game , A non-cooperative game is one during which players a...

A non-cooperative game is one during which players are unable to form enforceable contracts outside of these specifically modeled within the game. Hence, it's not outlined as games

Two player problem of points set up - game theory, a) Show that A c...

a) Show that A counting proof could be fun(?). But any old proof will do. (Note that the coefficients (1,2,1) in the above are just the elements of the second row of Pas

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd