coalitional game and matching markets, Game Theory

Assignment Help:
1. This question and the next is based on the following description.
Consider the coalitional game (referred to as Game 1) given by: N = {1,2,3,4};
v(N) = 3, v{i} = 0, i = 1,...,4, v{j,4} = 0, j = 1,2,3,
v(S) = 1 for all other coalitions S.
In Game 1,
a) players 1, 3 and 4 are substitutes.
b) players 2 is a dummy player.
c) players 1, 2 and 3 are substitutes.
d) player 4 is a dummy player.
e) None of the above.
2. In Game 1, player 1’s Shapley value is
a) 5/6.
b) 11/12.
c) 1/6.
d) 1/4.
e) None of the above.
3. In Game 1, player 4’s Shapley value is
a) 1/4.
b) 1/2.
c) 1/6.
d) 5/6.
e) None of the above.
4. Consider the two-sided matching model in which a set of three men M = {m1,m2,m3} and a set of three women W = {w1,w2,w3} have strict preferences over members of the opposite sex, given by
m1 : w2,w1,w3; w1 : m1,m3,m2
m2 : w1,w2,w3; w2 : m3,m1,m2
m3 : w1,w2,w3; w3 : m1,m2,m3.
The men ?nd all the women acceptable and the women ?nd all the men acceptable.
a) The men-proposing (M-proposing) and the women-proposing (W-proposing) Deferred Ac-ceptance Algorithms (DAAs) lead to the same core-stable matching for this example.
b) The M-proposing DAA matches m2 with w2 while the the W-proposing DAA matches m2 with w3.
c) Each of m1 and m2 strictly prefers his M-proposing match to his W-proposing match.
d) Each of w1, w2 and w3 strictly prefers her W-proposing match to her M-proposing match.
e) None of the above.
5. Consider the problem of matching a set of four students {i1,i2,i3,i4} to a set of three schools {s1,s2,s3}, where school s1 has a quota (or capacity) of 2 students each and schools s2 and s3 have a quota of 1 student each. Each student has a strict preference ranking over the schools and each school has a priority order for the students that is determined by a central authority. Each student’s preference and each school’s (strict) priority order for each student are given below
i1 : s3, s1, s2 s1 : i1, i2, i3, i4
i2 : s2, s1, s3 s2 : i1, i2, i3, i4
i3 : s1, s3, s2 s3 : i3, i1, i2, i4
i4 : s1, s2, s3
Applying the Top Trading Cycle Algorithm (TTCA) to this school choice problem leads to
a) i1 matched to s3, i2 to s1 and i3 to s4.
b) i1 matched to s3, i2 to s1 and i4 to s1.
c) i2 matched to s3, i3 to s2 and i4 to s1.
d) i1 matched to s3, i2 to s1 and i4 to s2.
e) None of the above.

Related Discussions:- coalitional game and matching markets

Proxy bidder , A proxy bidder represents the interests of a bidder not phys...

A proxy bidder represents the interests of a bidder not physically gift at the auction. Typically, the bidder can inform his proxy of the most quantity he's willing to pay, and als

Game theory equilibrium exercise, Exercise 1 a) Pure strategy nash equi...

Exercise 1 a) Pure strategy nash equilibrium in this case is Not Buy, bad ( 0,0) as no one wants to deviate from this strategy. b) The player chooses buy in the first perio

Subgame , A subset or piece of a sequential game starting at some node such...

A subset or piece of a sequential game starting at some node such {that each that each} player is aware of each action of the players that moved before him at every purpose. Sub ga

Asynchrony, In a repeated game it is often unspecified that players move co...

In a repeated game it is often unspecified that players move concurrently at predefined time intervals. However, if few players update their policies at different time intervals, t

Game playing in class-equilibrium payoffs are (2, Equilibrium payoffs are ...

Equilibrium payoffs are (2, 3, 2). Player A’s equilib- rium strategy is “N and then N if b follows N or N if d follows N” or “Always N.” Player B’s equilibrium strategy is “b if N

Trigger strategy, can i analyse all games under trigger strategies or it''s...

can i analyse all games under trigger strategies or it''s possible just for prisoners dilemma?

Write a bouncing ball video game, Write a bouncing ball video game. The gam...

Write a bouncing ball video game. The game is similar to the one described and depicted in The balls bounce within the screen where the two horizontal walls are fixed. The two v

Compute pure strategy and mixed strategy equilibria of game, Ronaldo (Brazi...

Ronaldo (Brazil) kicks a penalty against Casillas (Spain) in the 2006 World Cup nal. Sup- pose that Ronaldo can kick the ball to Casillas' upper left (UL), lower left (LL), upper r

Multiple item auction, Normal 0 false false false EN-US...

Normal 0 false false false EN-US X-NONE X-NONE

Hawk-dove game , Scenario The hawk-dove game is additionally commonly ca...

Scenario The hawk-dove game is additionally commonly called the sport of chicken. 2 hooligans with one thing to prove drive at one another on a slender road. The primary to swer

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd