coalitional game and matching markets, Game Theory

Assignment Help:
1. This question and the next is based on the following description.
Consider the coalitional game (referred to as Game 1) given by: N = {1,2,3,4};
v(N) = 3, v{i} = 0, i = 1,...,4, v{j,4} = 0, j = 1,2,3,
v(S) = 1 for all other coalitions S.
In Game 1,
a) players 1, 3 and 4 are substitutes.
b) players 2 is a dummy player.
c) players 1, 2 and 3 are substitutes.
d) player 4 is a dummy player.
e) None of the above.
2. In Game 1, player 1’s Shapley value is
a) 5/6.
b) 11/12.
c) 1/6.
d) 1/4.
e) None of the above.
3. In Game 1, player 4’s Shapley value is
a) 1/4.
b) 1/2.
c) 1/6.
d) 5/6.
e) None of the above.
4. Consider the two-sided matching model in which a set of three men M = {m1,m2,m3} and a set of three women W = {w1,w2,w3} have strict preferences over members of the opposite sex, given by
m1 : w2,w1,w3; w1 : m1,m3,m2
m2 : w1,w2,w3; w2 : m3,m1,m2
m3 : w1,w2,w3; w3 : m1,m2,m3.
The men ?nd all the women acceptable and the women ?nd all the men acceptable.
a) The men-proposing (M-proposing) and the women-proposing (W-proposing) Deferred Ac-ceptance Algorithms (DAAs) lead to the same core-stable matching for this example.
b) The M-proposing DAA matches m2 with w2 while the the W-proposing DAA matches m2 with w3.
c) Each of m1 and m2 strictly prefers his M-proposing match to his W-proposing match.
d) Each of w1, w2 and w3 strictly prefers her W-proposing match to her M-proposing match.
e) None of the above.
5. Consider the problem of matching a set of four students {i1,i2,i3,i4} to a set of three schools {s1,s2,s3}, where school s1 has a quota (or capacity) of 2 students each and schools s2 and s3 have a quota of 1 student each. Each student has a strict preference ranking over the schools and each school has a priority order for the students that is determined by a central authority. Each student’s preference and each school’s (strict) priority order for each student are given below
i1 : s3, s1, s2 s1 : i1, i2, i3, i4
i2 : s2, s1, s3 s2 : i1, i2, i3, i4
i3 : s1, s3, s2 s3 : i3, i1, i2, i4
i4 : s1, s2, s3
Applying the Top Trading Cycle Algorithm (TTCA) to this school choice problem leads to
a) i1 matched to s3, i2 to s1 and i3 to s4.
b) i1 matched to s3, i2 to s1 and i4 to s1.
c) i2 matched to s3, i3 to s2 and i4 to s1.
d) i1 matched to s3, i2 to s1 and i4 to s2.
e) None of the above.

Related Discussions:- coalitional game and matching markets

Variable add, In a Variable add game, the add of all player's payoffs diffe...

In a Variable add game, the add of all player's payoffs differs counting on the methods they utilize. this can be the other of a continuing add game during which all outcomes invol

Games sequential moves-game played b/w pitcher and batter, Problem: Consid...

Problem: Consider a (simplified) game played between a pitcher (who chooses between throwing a fastball or a curve) and a batter (who chooses which pitch to expect). The batter ha

Blind auction, Another term for a preserved bid auction in which bidders si...

Another term for a preserved bid auction in which bidders simultaneously submit bids to the auctioneer with no knowledge of the amount bid by other member. Usually, the uppermost b

Cournot learning, The Cournot adjustment model, initial proposed by Augusti...

The Cournot adjustment model, initial proposed by Augustin Cournot within the context of a duopoly, has players choose methods sequentially. In every amount, a firm selects the act

Nash equilibrium, Consider a game in which player 1 chooses rows, player 2 ...

Consider a game in which player 1 chooses rows, player 2 chooses columns and player 3 chooses matrices. Only Player 3''s payoffs are given below. Show that D is not a best response

Coalitional game and matching markets, 1. This question and the next is bas...

1. This question and the next is based on the following description. Consider the coalitional game (referred to as Game 1) given by: N = {1,2,3,4}; v(N) = 3, v{i} = 0, i = 1,...,4,

Strictly dominant strategy , A strategy is strictly dominant if, no matter ...

A strategy is strictly dominant if, no matter what the other players do, the strategy earns a player a strictly higher payoff than the other. Hence, a method is strictly dominant i

Equilibrium, An equilibrium, (or Nash equilibrium, named when John Nash) ma...

An equilibrium, (or Nash equilibrium, named when John Nash) may be a set of methods, one for every player, such that no player has incentive to unilaterally amendment her action. P

Payoff, In any game, payoffs are numbers that represent the motivations of ...

In any game, payoffs are numbers that represent the motivations of players. Payoffs might represent profit, quantity, "utility," or different continuous measures (cardinal payoffs)

Ordinally symmetric game, Ordinally Symmetric Game Scenario Any game dur...

Ordinally Symmetric Game Scenario Any game during which the identity of the player doesn't amendment the relative order of the ensuing payoffs facing that player. In different w

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd