Closure properties of recognizable languages, Theory of Computation

Assignment Help:

We got the class LT by taking the class SL and closing it under Boolean operations. We have observed that LT ⊆ Recog, so certainly any Boolean combination of LT languages will also be recognizable. But what about the class of recognizable languages as a whole? Are Boolean combinations of recognizable (not just LT) languages also recognizable. In answering we can use the same methodology we use to show that any language is recognizable: consider what we need to keep track of in scanning a string in order to determine if it belongs to the language or not and then use that information to build our state set.

Suppose, then, that L = L1 ∩ L2, where L1 and L2 are both recognizable. A string w will be in L iff it is in both L1 and L2. Since they are recognizable there exist DFAs A1 and A2 for which L1 = L(A1) and L2 = L(A2). We can tell if the string is in L1 or L2 simply by keeping track of the state of the corresponding automaton. We can tell if it is in both by keeping track of both states simultaneously.


Related Discussions:- Closure properties of recognizable languages

Distinguish between mealy and moore machine, Distinguish between Mealy and ...

Distinguish between Mealy and Moore Machine? Construct a Mealy machine that can output EVEN or ODD According to the total no. of 1's encountered is even or odd.

Computation of a dfa or nfa, Computation of a DFA or NFA without ε-transiti...

Computation of a DFA or NFA without ε-transitions An ID (q 1 ,w 1 ) computes (qn,wn) in A = (Q,Σ, T, q 0 , F) (in zero or more steps) if there is a sequence of IDs (q 1

Chomsky normal form, s->0A0|1B1|BB A->C B->S|A C->S|null find useless symbo...

s->0A0|1B1|BB A->C B->S|A C->S|null find useless symbol?

Turing machine, Can v find the given number is palindrome or not using turi...

Can v find the given number is palindrome or not using turing machine

Example of finite state automaton, The initial ID of the automaton given in...

The initial ID of the automaton given in Figure 3, running on input ‘aabbba' is (A, aabbba) The ID after the ?rst three transitions of the computation is (F, bba) The p

Defining strictly local automata, One of the first issues to resolve, when ...

One of the first issues to resolve, when exploring any mechanism for defining languages is the question of how to go about constructing instances of the mechanism which define part

Finiteness of languages is decidable, To see this, note that if there are a...

To see this, note that if there are any cycles in the Myhill graph of A then L(A) will be infinite, since any such cycle can be repeated arbitrarily many times. Conversely, if the

Path function of a nfa, The path function δ : Q × Σ*→ P(Q) is the extension...

The path function δ : Q × Σ*→ P(Q) is the extension of δ to strings: Again, this just says that to ?nd the set of states reachable by a path labeled w from a state q in an

Boolean operations - class of recognizable languages, Theorem The class of ...

Theorem The class of recognizable languages is closed under Boolean operations. The construction of the proof of Lemma 3 gives us a DFA that keeps track of whether or not a give

Qbasic, Ask question #Minimum 100 words accepte

Ask question #Minimum 100 words accepte

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd