Classifying critical points, Mathematics

Assignment Help:

Classifying critical points : Let's classify critical points as relative maximums, relative minimums or neither minimums or maximums.

Fermat's Theorem told us that all relative extrema (provided the derivative presents at that point of course) of a function will be critical points. The given graph has two relative extrema and both takes place at critical points as the Fermat's Theorem predicted.  Note that we've got a critical point which isn't a relative extrema ( x =0 ). it is okay since Fermat's theorem doesn't say that all critical points will be relative extrema.  Only it states that relative extrema will be critical points.

384_theorm.png

In the sketch of the graph we can illustrated that to the left of x = -2 the graph is decreasing & to the right of x = -2 the graph is increasing & x = -2 is a relative minimum.  In other terms, the graph is behaving around the minimum accurately as it ought to be in order for x = -2 to be a minimum.  The similar thing can be said for the relative maximum at x = 4 .  The graph is raising on the left and falling on the right exactly as it have to be in order for x = 4 to be a maximum.  At last, the graph is increasing on both of sides of x = 0 & therefore this critical point can't be a minimum or a maximum.

These ideas can be generalized to arrive at a way to test if a critical point is a relative maximum, relative minimum, or neither.  If x = c is a critical point and the function is decreasing to the left of x = c & it is rising to the right then x = c have to be a relative minimum of the function.  Similarly, if the function is rising to the left of x = c and decreasing to the right then x = c have to be a relative maximum of the function.  At last, if the function is rising on both sides of x = c or decreasing on both of the sides of x = c then x = c can be neither a relative minimum nor a relative maximum.

These ideas can be summarized up in the given test.

 

First Derivative Test

Suppose that x = c is a critical point of f ( x ) then,

1.   If f ′ ( x ) = 0 to the left of x = c  and f ′ ( x ) = 0 to the right of x = c then x = c is a relative maximum.

2.   If f ′ ( x ) = 0 to the left of x = c  & f ′ ( x ) = 0 to the right of x = c then x = c is a relative minimum.

3.   If f ′ ( x ) is the similar sign on both sides of x = c then x = c is neither a relative maximum nor a relative minimum.

It is significant to note here that the first derivative test will just classify critical points as relative extrema and not as absolute extrema.  Absolute extrema are largest & smallest function values and might not even exist or be critical points if they do present.

The first derivative test is accurately that, a test by the first derivative.  It doesn't ever utilizes the value of the function and thus no conclusions can be plotted from the test regarding the relative "size" of the function at the critical points (that would be required to identify absolute extrema) and can't even start to address the fact that absolute extrema might not takes place at critical points.


Related Discussions:- Classifying critical points

Find out if the sets of vectors are parallel or not, Determine or find out ...

Determine or find out if the sets of vectors are parallel or not. (a) a → = (2,-4,1), b = (-6, 12 , -3) (b) a → = (4,10), b = (2,9) Solution (a) These two vectors

Parametric equations and polar coordinates, Parametric Equations and Polar ...

Parametric Equations and Polar Coordinates In this part we come across at parametric equations and polar coordinates. When the two subjects don't come out to have that much in

Find the discount factors -linear interpolation, Find the discount factors ...

Find the discount factors -Linear interpolation: All rates should be calculated to 3 decimal places in % (e.g. 1.234%), the discount factors to 5 decimal places (e.g. 0.98765

Determine the function notation, Given f (x) = - x 2 + 6 x -11 determine e...

Given f (x) = - x 2 + 6 x -11 determine each of the following. (a)    f ( 2) (b)   f ( -10) (c)    f (t ) Solution (a)    f ( 2) = - ( 2) 2   + 6(2) -11 = -3 (

Combinations, evaluate the expression a) 10C4 b) 10P4.....I do not under...

evaluate the expression a) 10C4 b) 10P4.....I do not understand this

Math, i need help in math

i need help in math

Financial Math, can you help me with financial math??

can you help me with financial math??

School mathematics, I am interested in school mathematics online assignment...

I am interested in school mathematics online assignments , homework help, projects etc. I have good knowledge of mathematics and experience of 15+ years teaching mathematics in cen

Measurement story problem, Seth has a pet goldfish. When he got his goldfis...

Seth has a pet goldfish. When he got his goldfish , it was only 5 centimeters long . Now it has grown to be 92 millimeters long. How many millimeters has the goldfish grown since

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd