Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Classification of Solids into Insulators, Semiconductor and Conductors
A solid can conduct electric current if the electrons can move in it. This is possible only when an energy band is either partially filled or electrons can be easily excited to a vacant band. If a band is completely filled with electrons, the electrons are not free to move. If a band is completely vacant, there are no electrons to move and conduct electric current. Based on energy band theory the solids can be classified as under-
Insulators
Insulators are solids, which do not conduct electric current. In insulators valence band is completely filled and conduction band is completely vacant. They are separated by a very wide energy gap of the order of 6 e V, as shown in figure. Since the valence band is completely filled, the electrons cannot move, so they cannot conduct electricity. The conduction band is completely vacant having no electrons to move. To excite electrons from valence band valence band to conduction band we require an electric field of the order of 6*108 volt/m. Hence an insulator does not conduct electric current under normal condition.
Semiconductors
These solids have conductivity less than that of conductors but more than that of insulators. In semiconductors the valence band and conduction band are separated by a comparatively narrow forbidden energy gap of the order of <3 e V . Silicon has a crystal structure similar to that of diamond which is a typical insulator. At 0 K the valence band is band is completely filled and conduction band is completely vacant as in diamond. Hence in acts as an insulator. At room temperature some electrons are excited to the conduction band due to their thermal energy. Now the conduction band has some electrons and at the same time the valence band is no9 more completely filled. When an external potential difference is applied these electrons move constituting electric current. The vacancies formed in the valence band are considered as positive charge carriers moving in opposite direction to that electron in the conduction band.
Conductors
These are solids which readily conduct electricity. There are two types of energy bands in conductors depending on the electronic configuration of atoms. In alkali metals and other metals having configuration ns1 or ns2 np1 etc. having unpaired electrons in the outermost orbit of their atoms the valence band is partially filled. As the valence band is partially filled the electrons are easily excited to the higher levels in the same band. As a very large number of vacant levels exist, a large current can flow in conductors. In conductors having paired electrons in their outermost orbit the valence band is completely filled. So they should not conduct electric current. But it is observed that they also conduct electric current. This is because conduction band overlaps with the valence band forming a composite band which is also partially filled. In these conductors the forbidden energy gap E g = 0.
Power Transistor A power transistor is a three layer PNP or NPN semiconductor device having two junctions. Three terminals of power transistors are collector emitter
full info and operation..
A switch-mode power supply is to be designed with the following specifications: input voltage V s = 48 V ± 10%, output voltage V o = 5 V, switching frequency f s = 100 kHz, outp
Explain the Asynchronous Up-Down Counters? In some applications a counter must be able to count both down and up and the circuit below is a 3-bit up-down counter. It counts do
full project pdf
Q. Describe about Reduction Clause? Reduction clause specifies an operator as well as one or more list items. For every list item a private copy is created on every thread and
Q. Describe in detail the construction and working of analog type storage oscilloscope. Explain the principle of secondary emission. Analog Storage Oscilloscopes: Storage o
Q. Explain about Differentiator? Shown in Figure is a differentiator which is obtained by replacing R1 in the inverting amplifier of Figure by a capacitor C. Assuming ideal op-
Normal 0 false false false EN-IN X-NONE X-NONE
What is meant by Daisy Chaining method? It does not need any priority resolving network, rather the priorities of all the devices are effectively assumed to be in sequence.
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd