Classical free electron theory, Physics

Assignment Help:
  • Classical free electron theory:

The free electron theory of metals using classical laws was developed by Dude and Lorentz in the beginning of last century. That time the valance electrons in metals were regarded as the non-interacting particles of an ideal gas. The dude model is the application of Kinetic theory to electrons in a solid. It assumes that the material contains immobile positive ions and an electron gas of classical, non-interacting electrons of density n. Motion of these positive ions and electrons is damped by a fractional force due to their collisions with each other. This motion is characterized by a relaxation time 'τ'.

To obtain some useful results for conduction electrons in metals, let us start with some classical ideas.

(1)         In the absence of an applied electric field, the electrons move in random directions. They collide with random impurities and/or lattice imperfections in the crystal. These imperfections arise from thermal motion of ions about their equilibrium position.

(2)         The frequency of electron-lattice imperfections collisions can be described by a means free path λ. Mean free path (λ) can be defined as the average distance that an electron travels between collisions.

(3)         When an electric field is applied. The electron drifts in the direction opposite to that of the field. The speed with which electrons drift is called drift speed.

(4)          The drift speed is much less than the effective instantaneous speed v of the random motion. Let us now sound system with an example electric field. A given copper Rod of uniform cross-section (say 1sq-m) is subjected to a field. The possessive nature of electrons is now suppressed. The random motion is discouraged the charged electrons prefer to have a unidirectional motion. The direction of this motion is opposite to the direction of the applied electric field as sketched. Now the free electrons will bump into a caution of the lattice from time to time. Let the average time between such collisions be τ sec. immediately after a collision we suppose that the velocity of the electrons averages to zero. It means that the electron has no money of the momentum acquired from the field and that is thermal velocity averages to zero it means that its electron has no money of the momentum that its thermal velocity averages to zero. In a time τ sec the electron will at in a velocity given by:

                                                      Vd = aτ

 Where Vd is called drift velocity, and the magnitude of a=e E/m

Thus Vd= -eEτ/m

Usually the term eτ/m is replaced by μ. Μ is called the mobility of charge carriers. It can be defined as the drift velocity in unit field. Thus

                           Vd= -μE

If n is the density of electron and -e is the charge of the electron, then charge flowing through unit area in one second is given by

                                                 Jx = δq/aδt

Here δq= net quantity of charge flowing an area A in time δT and

Δq = -enAδx

Jx is also called the current density.

σ =neμ

in a metal, when temperature increases, n remains constant. But μ decreases as lattice scattering increases and therefore conductivity decreases.


Related Discussions:- Classical free electron theory

Is negative mass antimatter, Is negative mass antimatter? No. There is ...

Is negative mass antimatter? No. There is really no such thing as negative mass. Even antimatter has mass, which is always a positive (that is, greater-than-zero) quantity.

Motion, a rocket is launched at an angle 53 degree to the horizontal with a...

a rocket is launched at an angle 53 degree to the horizontal with a speed of 100 m/s. it moves along its initial line of motion with an acceleration of 30m/s for 3 seconds. at thi

Absorbance spectrophotometer , Absorbance spectrophotometer: A schemat...

Absorbance spectrophotometer: A schematic diagram of a simple instrument that is used to measure the absorption of visible light is shown in Figure below. When studyin

Centrifugal force with a tin can lid, Centrifugal force with a tin can lid ...

Centrifugal force with a tin can lid Punch a hole near the edge of a tin can lid. Attach it to the cord from the drill and view the effects of rotation.

Evaluate the total volume and the density of the sample, An ore sample weig...

An ore sample weighs 17.50 N in air. When the sample is suspended by a light cord and totally immersed in water, the tension in the cord is 11.20 N. Find the total volume and the d

Total internal reflection, Total Internal Reflection: When a ray of li...

Total Internal Reflection: When a ray of light passes from denser medium to rare medium and angle of incidence is greater than the critical angle. The incident ray reflects ba

Dipole moment, what is the electric field when both the charges are same in...

what is the electric field when both the charges are same in dipole

Pendulum, a pendulum is timed ,first for 20 swings and then for 50 swings ;...

a pendulum is timed ,first for 20 swings and then for 50 swings ; time for 20 swings = 17.4 sec and time for 50 sec = 43.2. calculate the average time per swing/

Compound microscope, What is the principle and ray diagram of a compound mi...

What is the principle and ray diagram of a compound microscope

Define the physical significance of damping coefficient, Define the physica...

Define the physical significance of damping coefficient and how can we caluclate it? What is its unit

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd