Class of recognizable languages, Theory of Computation

Assignment Help:

Proof (sketch): Suppose L1 and L2 are recognizable. Then there are DFAs A1 = (Q,Σ, T1, q0, F1) and A2 = (P,Σ, T2, p0, F2) such that L1 = L(A1) and L2 = L(A2). We construct A′ such that L(A′ ) = L1 ∩ L2. The idea is to have A′ run A1 and A2 in parallel-keeping track of the state of both machines. It will accept a string, then, iff both machines reach an accepting state on that string.

Let A′ = (Q × P,Σ, T′ , (q0, p0), F1 × F2), where

T′ def= [{((q, pi, (q′, p′), σ) | (q, q′, σi)∈ T1 and (p, p′, σ ∈ T2}.

2294_Class of recognizable languages.png

Then

(You should prove this; it is an easy induction on the structure of w.) It follows then that

751_Class of recognizable languages1.png


Related Discussions:- Class of recognizable languages

Strictly local languages, We have now de?ned classes of k-local languages f...

We have now de?ned classes of k-local languages for all k ≥ 2. Together, these classes form the Strictly Local Languages in general. De?nition (Strictly Local Languages) A langu

# Help, #Your company has 25 licenses for a computer program, but you disco...

#Your company has 25 licenses for a computer program, but you discover that it has been copied onto 80 computers. You informed your supervisor, but he/she is not willing to take an

Computation of a dfa or nfa, Computation of a DFA or NFA without ε-transiti...

Computation of a DFA or NFA without ε-transitions An ID (q 1 ,w 1 ) computes (qn,wn) in A = (Q,Σ, T, q 0 , F) (in zero or more steps) if there is a sequence of IDs (q 1

Finite languages and strictly local languages, Theorem The class of ?nite l...

Theorem The class of ?nite languages is a proper subclass of SL. Note that the class of ?nite languages is closed under union and concatenation but SL is not closed under either. N

Transition graphs, We represented SLk automata as Myhill graphs, directed g...

We represented SLk automata as Myhill graphs, directed graphs in which the nodes were labeled with (k-1)-factors of alphabet symbols (along with a node labeled ‘?' and one labeled

Transition and path functions, When an FSA is deterministic the set of trip...

When an FSA is deterministic the set of triples encoding its edges represents a relation that is functional in its ?rst and third components: for every q and σ there is exactly one

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd