Class of recognizable languages, Theory of Computation

Assignment Help:

Proof (sketch): Suppose L1 and L2 are recognizable. Then there are DFAs A1 = (Q,Σ, T1, q0, F1) and A2 = (P,Σ, T2, p0, F2) such that L1 = L(A1) and L2 = L(A2). We construct A′ such that L(A′ ) = L1 ∩ L2. The idea is to have A′ run A1 and A2 in parallel-keeping track of the state of both machines. It will accept a string, then, iff both machines reach an accepting state on that string.

Let A′ = (Q × P,Σ, T′ , (q0, p0), F1 × F2), where

T′ def= [{((q, pi, (q′, p′), σ) | (q, q′, σi)∈ T1 and (p, p′, σ ∈ T2}.

2294_Class of recognizable languages.png

Then

(You should prove this; it is an easy induction on the structure of w.) It follows then that

751_Class of recognizable languages1.png


Related Discussions:- Class of recognizable languages

Two-tape turing machine, Let there L1 and L2 . We show that L1 ∩ L2 is CFG ...

Let there L1 and L2 . We show that L1 ∩ L2 is CFG . Let M1 be a decider for L1 and M2 be a decider for L2 . Consider a 2-tape TM M: "On input x: 1. copy x on the second

Class of recognizable languages, Proof (sketch): Suppose L 1 and L 2 are ...

Proof (sketch): Suppose L 1 and L 2 are recognizable. Then there are DFAs A 1 = (Q,Σ, T 1 , q 0 , F 1 ) and A 2 = (P,Σ, T 2 , p 0 , F 2 ) such that L 1 = L(A 1 ) and L 2 = L(

Strictly local languages, We have now de?ned classes of k-local languages f...

We have now de?ned classes of k-local languages for all k ≥ 2. Together, these classes form the Strictly Local Languages in general. De?nition (Strictly Local Languages) A langu

Chomsky-schutzenberger, The upper string r ∈ Q+ is the sequence of states v...

The upper string r ∈ Q+ is the sequence of states visited by the automaton as it scans the lower string w ∈ Σ*. We will refer to this string over Q as the run of A on w. The automa

Create a general algorithm from a checking algorithm, Claim Under the assum...

Claim Under the assumptions above, if there is an algorithm for checking a problem then there is an algorithm for solving the problem. Before going on, you should think a bit about

Myhill-nerode, Theorem (Myhill-Nerode) A language L ⊆ Σ is recognizable iff...

Theorem (Myhill-Nerode) A language L ⊆ Σ is recognizable iff ≡L partitions Σ* into ?nitely many Nerode equivalence classes. Proof: For the "only if" direction (that every recogn

Define ambiguity in cfg, Define the following concept with an example: a.  ...

Define the following concept with an example: a.    Ambiguity in CFG b.    Push-Down Automata c.    Turing Machine

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd