Class of recognizable languages, Theory of Computation

Assignment Help:

Proof (sketch): Suppose L1 and L2 are recognizable. Then there are DFAs A1 = (Q,Σ, T1, q0, F1) and A2 = (P,Σ, T2, p0, F2) such that L1 = L(A1) and L2 = L(A2). We construct A′ such that L(A′ ) = L1 ∩ L2. The idea is to have A′ run A1 and A2 in parallel-keeping track of the state of both machines. It will accept a string, then, iff both machines reach an accepting state on that string.

Let A′ = (Q × P,Σ, T′ , (q0, p0), F1 × F2), where

T′ def= [{((q, pi, (q′, p′), σ) | (q, q′, σi)∈ T1 and (p, p′, σ ∈ T2}.

2294_Class of recognizable languages.png

Then

(You should prove this; it is an easy induction on the structure of w.) It follows then that

751_Class of recognizable languages1.png


Related Discussions:- Class of recognizable languages

DFA, designing DFA

designing DFA

Create a general algorithm from a checking algorithm, Claim Under the assum...

Claim Under the assumptions above, if there is an algorithm for checking a problem then there is an algorithm for solving the problem. Before going on, you should think a bit about

Pojects idea, i want to do projects for theory of computation subject what ...

i want to do projects for theory of computation subject what topics should be best.

Java programming, 1. An integer is said to be a “continuous factored” if it...

1. An integer is said to be a “continuous factored” if it can be expresses as a product of two or more continuous integers greater than 1. Example of continuous factored integers

Automata, automata of atm machine

automata of atm machine

Production, How useful is production function in production planning?

How useful is production function in production planning?

Formal language theory, This was one of the ?rst substantial theorems of Fo...

This was one of the ?rst substantial theorems of Formal Language Theory. It's maybe not too surprising to us, as we have already seen a similar equivalence between LTO and SF. But

Equivalence of nfas, It is not hard to see that ε-transitions do not add to...

It is not hard to see that ε-transitions do not add to the accepting power of the model. The underlying idea is that whenever an ID (q, σ  v) directly computes another (p, v) via

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd