Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Circuits involving capacitive decay:
Consider the circuit shown below. Depending on the time constant of the circuit, relative to the period of the square wave applied to it, the response of the circuit can vary widely. Assuming T is half the period of the square wave.
If CR is slightly less than T, the waveform in the top diagram is produced at the output (across C).
If Cr< If CR>>T, the circuit is an integrating circuit, since the output waveform is that of the integral of the square wave, that is the area underneath it. This is shown in the lower diagram. If the positions of the resistor and capacitor are reversed and the voltage across the resistor measured, then the waveform produced will be that of the current, since V=IR. If CR is short enough then a stream of pulses is produced when a square wave is applied to the input. Shown in the top diagram. If CR< When CR>>T the circuit is called a coupling circuit. A coupling circuit allows the input waveform to pass to the output whilst blocking the passage of any d.c.
If CR>>T, the circuit is an integrating circuit, since the output waveform is that of the integral of the square wave, that is the area underneath it. This is shown in the lower diagram.
If the positions of the resistor and capacitor are reversed and the voltage across the resistor measured, then the waveform produced will be that of the current, since V=IR.
If CR is short enough then a stream of pulses is produced when a square wave is applied to the input. Shown in the top diagram.
If CR< When CR>>T the circuit is called a coupling circuit. A coupling circuit allows the input waveform to pass to the output whilst blocking the passage of any d.c.
When CR>>T the circuit is called a coupling circuit. A coupling circuit allows the input waveform to pass to the output whilst blocking the passage of any d.c.
why at critical temperature in superconductors resistance becomes zero? Solution) For conductors as the temperature increases their rasistance increases and as temperature decreas
Hello
Explain displacement x(t) is known as displacement and it denotes the position of a body at time. If the displacement is positive then that body is to the right of the chosen
explain quantization of charge
Illustrate ‘tan A ‘and ‘tan B' positions of a deflection magnetometer. Illustrate the theory to calculate magnetic moment of a bar magnet and Horizontal component of the earths
Show that the spectrum of thermal radiation for T ¼ 300K peaks at approximately 10 microns Minimum 100 words accepted
The electric field E because of a point charge at any point near it is explained as where q is the test charge and F is the force acting on it. What is the physical significance of
It appears the intensity will be maximized at that positions where path dissimilarity is an integral multiple of wavelength these points are called as points of constructive inter
defination of quantom theory
Capacity
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd