Circles - common polar coordinate graphs, Mathematics

Assignment Help:

Circles - Common Polar Coordinate Graphs

Let us come across at the equations of circles in polar coordinates.

1. r = a .

This equation is saying that there is no matter what angle we have got the distance from the origin have to be a.  If you think about it that is precisely the definition of a circle of radius a centered at the origin.

Thus, this is a circle of radius a centered at the origin. This is as well one of the reasons why we might wish to work in polar coordinates. Equation of a circle centered at the source has a very nice equation, not like the corresponding equation in Cartesian coordinates.

2. r = 2a cos θ

We looked at a particular instance of one of these when we were converting equations to Cartesian coordinates.

This is a circle of radius |a| and center (a,0) . 

Note: a might be negative (as it was in our instance above) and thus the absolute value bars are needed on the radius. Though they should not be utilized on the center.

3. r = 2b sin θ

This is identical to the previous one.  It is a circle of radius |b| and center (0, b).

4. r = 2a cos θ + 2b sin θ.

This is a combination of the preceding two and by completing the square two time it can be displayed that this is a circle of radius √(a2 + b2) and center (a, b).  In another words, this is the common equation of a circle that is not centered at the origin.


Related Discussions:- Circles - common polar coordinate graphs

Mrs, Distributive Property _x7=(3x7)+(2x_)

Distributive Property _x7=(3x7)+(2x_)

How much did donald earn in commissions last month, Donald sold $5,250 wort...

Donald sold $5,250 worth of latest insurance policies last month. If he receives a commission of 7% on new policies, how much did Donald earn in commissions last month? To ?nd

F distribution or variance ratio distribution, Frequency Distribution or Va...

Frequency Distribution or Variance Ratio Distribution This was developed by R. A Fisher in 1924 and is normally defined in terms of the ratio of the variances of two usually d

Parallel vectors - applications of scalar multiplication, Parallel Vectors ...

Parallel Vectors - Applications of Scalar Multiplication This is an idea that we will see fairly a bit over the next couple of sections.  Two vectors are parallel if they have

Quadratic equation modeling profitability, Sam''s sport''s equipment sells ...

Sam''s sport''s equipment sells footballs. They maximized their profitability last year at (6,4) where x represents employees and P(x) represents profitability. Sam noticed that wh

Determine the volume of the hollow solid, A solid is formed by cutting the ...

A solid is formed by cutting the top off of a cone with a slice parallel to the base, and then cutting a cylindrical hole into the resulting solid. Determine the volume of the holl

Partial Differentiation, If the sides angles of a triangle ABC vary in such...

If the sides angles of a triangle ABC vary in such a way that it''s circum - radius remain constant. Prove that, da/cos A +db/cos B+dc/cos C=0

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd