Chomsky-schutzenberger, Theory of Computation

Assignment Help:

The upper string r ∈ Q+ is the sequence of states visited by the automaton as it scans the lower string w ∈ Σ*. We will refer to this string over Q as the run of A on w. The automaton A accepts w iff the run of A on w ends in an accepting state. (If A is non-deterministic there will potentially be many runs with the automaton accepting if any one of them ends in an accepting state.) Note that the set of runs of an automaton is an SL2 language, recognized by the SL2 automaton (over Q) one gets by projecting away the third component of the triples of GA. Thus there is some kind of close relationship between the strictly local languages and the recognizable languages.

To get at this we will start by working in the other direction, extending our tiles to hold four symbols. The idea is to include, for each tile (q, p, σ) ∈ GA, a tile extended with σ′ for each σ′ ∈ Σ. (We don't actually need tiles for all such σ′ , only for those that occur on tiles (x, q, σ′) which might precede this one in a tiling, but including all of them will be harmless-the ones that do not occur on such tiles will just be useless.)


Related Discussions:- Chomsky-schutzenberger

Create a general algorithm from a checking algorithm, Claim Under the assum...

Claim Under the assumptions above, if there is an algorithm for checking a problem then there is an algorithm for solving the problem. Before going on, you should think a bit about

Automata answer, build a TM that enumerate even set of even length string o...

build a TM that enumerate even set of even length string over a

#turing machine, #can you solve a problem of palindrome using turing machin...

#can you solve a problem of palindrome using turing machine with explanation and diagrams?

Closure properties of recognizable languages, We got the class LT by taking...

We got the class LT by taking the class SL and closing it under Boolean operations. We have observed that LT ⊆ Recog, so certainly any Boolean combination of LT languages will also

Graph Connectivity, Let G be a graph with n > 2 vertices with (n2 - 3n + 4)...

Let G be a graph with n > 2 vertices with (n2 - 3n + 4)/2 edges. Prove that G is connected.

Universality problem, The Universality Problem is the dual of the emptiness...

The Universality Problem is the dual of the emptiness problem: is L(A) = Σ∗? It can be solved by minor variations of any one of the algorithms for Emptiness or (with a little le

Regular expressions, The project 2 involves completing and modifying the C+...

The project 2 involves completing and modifying the C++ program that evaluates statements of an expression language contained in the Expression Interpreter that interprets fully pa

Computations of sl automata, We will specify a computation of one of these ...

We will specify a computation of one of these automata by specifying the pair of the symbols that are in the window and the remainder of the string to the right of the window at ea

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd