Children have their own strategies for learning maths, Mathematics

Assignment Help:

Children Have Their Own Strategies For Learning

Vibhor, aged 7, was once asked if he knew what 'seven lots of eight' are. He said he didn't. He was then asked, "Can you work it out?" There was a long pause. Then Vibhor said, "56". "How did you get that?" "Well", answered Vibhor, "ten eights is 80. Then take away 8, that is 72, again take away 8, 64, take away 8, 56."

Shanta, a Class 3 child, was asked to solve 189 - 67. She said it was 3 + 30 + 89, that is, 122. This strategy of hers, was considered 'wrong' by her teacher, because his method to get the answer was '189 take away 7, take away 60'.

Discouraging children from evolving their own strategies results in blocking their ability to think, to build connections and look for patterns in mathematics.

Instead, they learn mathematics as a series of disconnected and meaningless facts and rules to be blindly memorised and applied (for example, the multiplication tables).

If you allow children to solve mathematical problems by their own methods, you would find an amazing variety of thought processes. Consider what this friend of mine has to say.

"While teaching children mathematics, I have often been surprised by the manner in which children arrive at answers to questions. Between the problem and the answer there is a string of arguments and logic which is often a creation of the child. I once taught children multiplication of a two-digit number by a two-digit number. I worked out a few examples and explained the algorithm to them a number of times. Then I gave them the problem, 12×13 The first child to report having done the problem gave the answer 156. On looking at her notebook I found the answer written just below the problem. I asked the child for the rough work She produced the following figures 100 20 30 6. On repeated questioning the girl said, "I multiplied 10 by 10 first, and then 2 by 10, and so on."

On another occasion I was doing problems in simple interest that involved finding out the rate of interest. Giving them a problem, I was just beginning to relax when a hand shot up. I was amazed at the speed, and asked for the answer.

He gave the correct reply, 5%. I mentally patted myself for a successful presentation of the complex algorithms. Then I suddenly thought, "Let me look at the notebook and find out how he has solved the question." There was a lingering doubt in my mind that he was perhaps coached at home. The child came with a blank notebook I asked him where he had solved the problem. "Oh! I solved it using what you had said yesterday", he said. "You had said that banks give 5% interest on money deposited." "

What do you deduce from these two examples? Would you agree that they add to the evidence that children develop their own strategies to solve problems?

They may either be correct or wrong, from the adult's point of view. But, for the child they are always correct. A child continues modifying old strategies and developing new ones to match and understand her mathematical experiences.

Given the right environment, this process goes on, and enables the child to become capable of doing and thinking mathematics naturally. But forcing children to follow one single strategy, without deviation or creativity, gradually dampens their urge and ability to create their own strategies and conceptual thinking.


Related Discussions:- Children have their own strategies for learning maths

Random variable, RANDOM VARIABLE A variable which assumes differ...

RANDOM VARIABLE A variable which assumes different numerical values as a result of random experiments or random occurrences is known as a random variable. The rainfal

Applications of series - estimating the value of a series, Estimating the V...

Estimating the Value of a Series One more application of series is not actually an application of infinite series.  It's much more an application of partial sums.  Actually, we

Objectives of addition and subtraction, Objectives After going throu...

Objectives After going through this unit, you should be able to 1. explain the processes involved ih addition and subtraction; 2. plan and execute activities that woul

Linear programming, As office manager of her firm, Marcellyne has been dir...

As office manager of her firm, Marcellyne has been directed to buy new filing cabinets. She knows that cabinet A costs $10, requires 6 square feet of floor space, and holds 9 cubic

Articulate reasons and construct arguments, By such interactions children l...

By such interactions children learn to articulate reasons and construct arguments. When a child is exposed to several interactions of this kind, she gradually develops the ability

Linear Programming, A garden shop wishes to prepare a supply of special fer...

A garden shop wishes to prepare a supply of special fertilizer at a minimal cost by mixing two fertilizers, A and B. The mixture is to contain at least 45 units of phosphate at lea

Convert to scientific notation, 1 . If someone is 20 years old, deposits $3...

1 . If someone is 20 years old, deposits $3000 each year into a traditional IRA for 50 years at 6% interest compounded annually, and retires at age 70, how much money will be in th

Find the value of the first instalment, A man arranges to pay a debt of Rs....

A man arranges to pay a debt of Rs.3600 in 40 monthly instalments which are in a AP. When 30 instalments are paid he dies leaving one third of the debt unpaid. Find the value of th

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd