Children have their own strategies for learning maths, Mathematics

Assignment Help:

Children Have Their Own Strategies For Learning

Vibhor, aged 7, was once asked if he knew what 'seven lots of eight' are. He said he didn't. He was then asked, "Can you work it out?" There was a long pause. Then Vibhor said, "56". "How did you get that?" "Well", answered Vibhor, "ten eights is 80. Then take away 8, that is 72, again take away 8, 64, take away 8, 56."

Shanta, a Class 3 child, was asked to solve 189 - 67. She said it was 3 + 30 + 89, that is, 122. This strategy of hers, was considered 'wrong' by her teacher, because his method to get the answer was '189 take away 7, take away 60'.

Discouraging children from evolving their own strategies results in blocking their ability to think, to build connections and look for patterns in mathematics.

Instead, they learn mathematics as a series of disconnected and meaningless facts and rules to be blindly memorised and applied (for example, the multiplication tables).

If you allow children to solve mathematical problems by their own methods, you would find an amazing variety of thought processes. Consider what this friend of mine has to say.

"While teaching children mathematics, I have often been surprised by the manner in which children arrive at answers to questions. Between the problem and the answer there is a string of arguments and logic which is often a creation of the child. I once taught children multiplication of a two-digit number by a two-digit number. I worked out a few examples and explained the algorithm to them a number of times. Then I gave them the problem, 12×13 The first child to report having done the problem gave the answer 156. On looking at her notebook I found the answer written just below the problem. I asked the child for the rough work She produced the following figures 100 20 30 6. On repeated questioning the girl said, "I multiplied 10 by 10 first, and then 2 by 10, and so on."

On another occasion I was doing problems in simple interest that involved finding out the rate of interest. Giving them a problem, I was just beginning to relax when a hand shot up. I was amazed at the speed, and asked for the answer.

He gave the correct reply, 5%. I mentally patted myself for a successful presentation of the complex algorithms. Then I suddenly thought, "Let me look at the notebook and find out how he has solved the question." There was a lingering doubt in my mind that he was perhaps coached at home. The child came with a blank notebook I asked him where he had solved the problem. "Oh! I solved it using what you had said yesterday", he said. "You had said that banks give 5% interest on money deposited." "

What do you deduce from these two examples? Would you agree that they add to the evidence that children develop their own strategies to solve problems?

They may either be correct or wrong, from the adult's point of view. But, for the child they are always correct. A child continues modifying old strategies and developing new ones to match and understand her mathematical experiences.

Given the right environment, this process goes on, and enables the child to become capable of doing and thinking mathematics naturally. But forcing children to follow one single strategy, without deviation or creativity, gradually dampens their urge and ability to create their own strategies and conceptual thinking.


Related Discussions:- Children have their own strategies for learning maths

Geometry, What is the better buy?a square pizza measuring 8 inches by 8inch...

What is the better buy?a square pizza measuring 8 inches by 8inches that cost $10 or a round pizza with a 9 inch diameter that also cost $10?

what are the coordinates of the vertex , Use the graph of y = x2 - 6x  to ...

Use the graph of y = x2 - 6x  to answer the following: a)         Without solving the equation (or factoring), determine the solutions to the equation  x 2 - 6x = 0  usi

Definite integral, from 0->1: Int sqrt(1-x^2) Solution) I=∫sqrt(1-x 2 ...

from 0->1: Int sqrt(1-x^2) Solution) I=∫sqrt(1-x 2 )dx = sqrt(1-x 2 )∫dx - ∫{(-2x)/2sqrt(1-x 2 )}∫dx ---->(INTEGRATION BY PARTS)        = x√(1-x 2 ) - ∫-x 2 /√(1-x 2 ) Let

Expected value of perfect information, Expected Value of Perfect Informatio...

Expected Value of Perfect Information In the above problems we have used the expected value criterion to evaluate the decisions under the conditions of risk. But, as long as un

Estimate the position of an object at any time, The position of an object a...

The position of an object at any time t (in hours) is specified by, s (t ) = 2t 3 - 21t 2 + 60t -10 Find out when the object is moving to the right and whiles the object

Auxiliary methods for information distribution, AUXILIARY METHODS There...

AUXILIARY METHODS There are other reprographic methods which although commonly used earlier, are now mainly used for specific purposes. We think you should be aware of these me

Important formulas of functions , Important formulas d (a b )/ dx  = 0...

Important formulas d (a b )/ dx  = 0                              This is a constant d ( x n ) / dx = nx n -1                      Power Rule d (a x ) / dx = a x l

Initial conditions to find system of equations, Solve the subsequent IVP. ...

Solve the subsequent IVP. y′′ + 11y′ + 24 y = 0 y (0) =0  y′ (0)=-7  Solution The characteristic equation is as r 2 +11r + 24 = 0 ( r + 8) ( r + 3) = 0

Fundamental theorem of integral facts formulasproperties, Fundamental Theor...

Fundamental Theorem of Calculus, Part I If f(x) is continuous on [a,b] so, g(x) = a ∫ x f(t) dt is continuous on [a,b] and this is differentiable on (a, b) and as,

How long will it take her to save $350, Each week Jaime saves $25. How long...

Each week Jaime saves $25. How long will it take her to save $350? Divide $350 by $25; 350 ÷ 25 = 14 weeks.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd