Change in flux linkage, Electrical Engineering

Assignment Help:

1. The coil remaining stationary with respect to the flux, the flux varies in magnitude with time. Since no motion is involved, no energy conversion takes place. Equation gives the transformer emf (or the pulsational emf ) as in the case of a transformer, in which a time-varying flux linking a stationary coil yields a time-varying voltage.

2. The flux remaining constant, the coil moves through it. A conductor or a coil moving through a magnetic field will have an induced voltage, known as the motional emf (or speed emf ), given by

Motional emf e = BlU

which is often called the cutting-of-flux equation, where B is the flux density of a non- time-varying, uniform magnetic field, l is the length of the conductor, U is the velocity of the conductor, and ¯B, ¯l, and ¯U are mutually perpendicular in their directions. If the motion is rotary in nature, it is also known as rotational voltage. The direction for the motional emf can be worked out from the right-hand rule: if the thumb, first, and second fingers of the right hand are extended so that they are mutually perpendicular to each other, and if the thumb represents the direction of ¯U and the first finger the direction of ¯B, the second finger will then represent the direction of the emf along ¯l.

1425_Change in flux linkage.png

The generation of motional emf is further illustrated by a simple example, where a single-turn coil formed by the moving (or sliding) conductor (moving with velocity U), the two conducting rails, and the voltmeter are situated in a magnetic field of flux density B. The conductor moving with a velocity U, in a direction at right angles to both B and l, sweeps the area lU in 1 second. The flux per unit time in this area is BlU, which is also the flux linkage per unit time with the single-turn coil. Thus, the induced emf e is simply given by BlU. The motional emf (or speed emf) is always associated with the conversion of energy between the mechanical and electrical forms.

3. The coil may move through a time-varying flux; that is to say, both changes (1) and (2) may occur together.Usually one of the two phenomena is so predominant in a given device that the other may be neglected for the purposes of analysis.


Related Discussions:- Change in flux linkage

Show advantages of oscillators, Q. Show Advantages of Oscillators? Alth...

Q. Show Advantages of Oscillators? Although oscillations can be produced by mechanical devices (e.g. alternators), but electronic oscillators have the following advantages:

Explain biased and double clipper circuits, Q. Explain biased and double c...

Q. Explain biased and double clipper circuits.   Clipper can be either forward biased or reverse biased. If a battery is connected in series with the diode in a positi

Show operation on jfet, Q. Show Operation on JFET? The junction in the ...

Q. Show Operation on JFET? The junction in the JFETis reverse-biased for normal operation.No gate current flows because of the reverse bias and all carriers flow from source to

Find the current, 1. A 1 μm long and 100 μm 2 cross-sectional area silicon...

1. A 1 μm long and 100 μm 2 cross-sectional area silicon bar is doped with 10 16 /cm 3 phosphorous. Use the graph below to: a. Find the current at 300°K with 10 V applie

Calculate the power dissipated in the amplifier, For the amplifier circuit ...

For the amplifier circuit shown in Figure with R i ≅ ∞,R o ≅ 0,A = 10,R L = 100 , and v in = 1 V, calculate the power dissipated in the amplifier if the voltage at the power-s

#title thyristor, what is finger voltage in terms of thyristor

what is finger voltage in terms of thyristor

Determine the voltage across each resistor, For the circuit of Fig: (i) ...

For the circuit of Fig: (i) using Kirchoff's Laws , find all the currents (ii)  determine the voltage across each resistor and check that all loops comply with KVL (iii

Determine the current for given capacitance values, Q. Consider the circuit...

Q. Consider the circuit of Figure. Determine and sketch i L (t) and v C (t) for capacitance values of (a) 1/6 F, (b) 1/8 F, and (c) 1 / 26 F. Note that the capacitance values ar

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd