Cartesian graph of density of water - temperature, Mathematics

Assignment Help:

Cartesian Graph of Density of Water - Temperature:

Example: The  density  of  water  was  measured  over  a  range  of  temperatures.   Plot the subsequent recorded data on a Cartesian coordinate graph.

Temperature (°C)                                                       Density (g/ml)

40°                                                                                0.992

50°                                                                                0.988

60°                                                                                0.983

70°                                                                                0.978

80°                                                                                0.972

90°                                                                                0.965

100°                                                                              0.958

To plot the data the first step is to label the x-axis and the y-axis. Let the x-axis be temperature in °C and the y-axis is density in g/ml.

The further step is to establish the units of measurement along every axis. The x-axis must range from approximately 40 to 100 and the y-axis from 0.95 to 1.00.

The points are then plotted one by one.  Below figure shows the resulting Cartesian coordinate graph.

2408_Cartesian Graph of Density of Water - Temperature.png

Figure: Cartesian Coordinate Graph of Density of Water vs. Temperature

Graphs are convenient since, at a single glance, the main features of the relationship among the two physical quantities plotted can be seen.  Further, if some previous knowledge of the physical system under consideration is available, the numerical value pairs of points could be connected through a straight line or a smooth curve. From these plots, a values at points not specifically measured or calculated can be acquired.  In Figures, the data points have been connected through a straight line and a smooth curve, correspondingly.  From these plots, the values at points not particularly plotted can be determined. For instance, using Figure, the density of water at 65°C can be determined to be 0.98 g/ml.  Because 65°C is within the scope of the available data, it is known as an interpolated value.   Also using Figure, the water density at 101°C can be estimated to be 0.956 g/ml.  Because 101°C is outside the scope of the available data, it is known as an extrapolated value.  While the value of 0.956 g/ml appears reasonable, a significant physical fact is absent and not predictable from the data given.  Water boils at 100°C at atmospheric pressure.  At temperatures above 100°C it is not a liquid, but a gas.  Thus, the value of 0.956 g/ml is of no importance except when the pressure is above atmospheric.

This describes the relative ease of interpolating & extrapolating using graphs. It also points out the precautions which must be taken, namely, extrapolation & interpolation should be done only if there is some prior knowledge of the system. That is particularly true for extrapolation where the available data is being extended into a region whereas unknown physical changes may take place.


Related Discussions:- Cartesian graph of density of water - temperature

Applied Math, Calucations of gradients find f Graph some level curve f=cons...

Calucations of gradients find f Graph some level curve f=const. f=9x^2 = 4y^2

Minimizing the sum of two distances, The value of y that minimizes the sum ...

The value of y that minimizes the sum of the two distances from (3,5) to (1,y) and from (1,y) to (4,9) can be written as a/b where a and b are coprime positive integers. Find a+b.

Metric and costamary, can you please help me with this topic that im on in ...

can you please help me with this topic that im on in classand I just don''t get it and can u help me with dividing fractions adding mutply subtract add

Operations with rational numbers, larry spends 3/4 hours twice a day walkin...

larry spends 3/4 hours twice a day walking and playing with his dog. He spends 1/6 hours twice a day feeding his dog. how much time does larry spend on his dog each day?

Describe vibration absorber and white noise, Describe what is meant by eac...

Describe what is meant by each of the following NVH terms and explain their importance in vehicle refinement: (a)  Vibration absorber (b)  Fast Fourier Transform (c)  Whit

Utilize the chain rule to differentiate, Chain Rule : Assume that we have ...

Chain Rule : Assume that we have two functions f(x) & g(x) and they both are differentiable. 1.   If we define F ( x ) = ( f o g ) ( x ) then the derivative of F(x) is,

Maxima and minima, Maxima and Minima We have to make a distinctio...

Maxima and Minima We have to make a distinction between relative maxima (or minima) and global maxima (or minima). Let f(x) be a function of x. Then the global maxi

Matrices, (e) Solve the following system of equations by using Matrix meth...

(e) Solve the following system of equations by using Matrix method. 3x + 2y + 2z = 11 x + 4y + 4z = 17 6x + 2y + 6z = 22

Geometry, Ask question A triangle has two sides that measure 23 ft and 30 f...

Ask question A triangle has two sides that measure 23 ft and 30 ft. Which could be the measure of the third side? A. 5 ft B. 7 ft C. 10 ft D. 53 ft #Minimum 100 words accepted

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd