Carry out a perspective projection, Computer Graphics

Assignment Help:

Consider the line segment AB in 3-Dimentional parallel to the z-axis along with end points A (- 5,4,2) and also B (5,-6,18). Carry out a perspective projection upon the X=0 plane; here the eye is placed at (10, 0,10).

Solution: Suppose here that P (x, y, z) be any point in the space.

The parametric equation of a line beginning from E and passing via P is: E + t. (P - E), o < t < 1.

= (10,0,10) + t. [(x, y, z) - (10, 0, 10)]

= (10, 0,10) + t [(x - 10)], y (z - 10)]

= (t. (x - 10) + 10, t. y, t (z - 10) + 10)

Suppose a point P' can be obtained, as t = t*

∴P' = (x', y', z') = (t* (x - 10) + 10, t*.y, t*. (z - 10) + 10)

 Because the point P' lies on x = 0 plane as:

1898_Carry out a perspective projection 1.png

          Figure: (j)

= t* (x - 10) + 10 = 0

= t* =(- 10)/ (x - 10)

= P' = (x',y',z') = (0,((-10.y)/(x - 10)),(((-10)(z - 10))/(x - 10)), + 10)

(0, ((-10.y)/(x - 10)),((10x - 10z)/(x - 10)))

In terms of Homogeneous coordinate system;

P' = (x', y', z', 1) = ( 0, ((-y )/((x - 10) - 1)) ,  (x -z)/((x/10) - 1)), 1)

= (0, -y, x-z, ((x/10) - 1))

In Matrix form there is:

2067_Carry out a perspective projection 2.png

-------------------------(1)

In above equation (1) is the needed perspective transformation, that gives a coordinates of a projected point P' (x', y', z') on the x = 0 plane, whereas a point p (x, y, z) is viewed from E (10, 0, 10)

Currently, for the specified points A (-5, 4, 2) and B (5, -6, 18), A' and B' are their projection upon the x = 0 plane.

So now from Equation (1) we get:

1289_Carry out a perspective projection 3.png

= (0,-4, -7, ((-5/10) - 1))

= (0 , -40, -70, -15)

(0, 40/15, 70/15, 1)

Thus x1' = 0;  y1' = 2.67 ;    z1' = 4.67

As the same in:

137_Carry out a perspective projection 4..png

= (0, 60, - 130, - 5)

= (0, - 12, 26, 1)

 Thus x2' = 0 ;  y2' = - 12 ;    z2' = 26

Hence the projected points A' and B' of specified points A and B are:

A' = (x1', y1'z1') = (0, 2.67, 4.67)    and     B' = (x2', y2', z2') = (0, - 12, 26, 1)


Related Discussions:- Carry out a perspective projection

Utility purpose of display processor in the graphic system, Explain the uti...

Explain the utility and purpose of display processor in the graphic system.  The purpose of the display processor is to free the CPU from the graphics chores. A major task of the d

Advantages of scan line algorithm, Advantages of Scan line Algorithm:  ...

Advantages of Scan line Algorithm:   This time and always we are working along with one-dimensional array as: x[0...x_max] for color not a 2D-array like in Z-buffer algorithm.

Rotation - 2-d and 3-d transformations, Rotation - 2-d and 3-d transformati...

Rotation - 2-d and 3-d transformations Given a 2-D point P(x,y), that we want to rotate, along with respect to an arbitrary point A(h,k). Suppose P'(x'y') be the effect of ant

Assumption for digital differential analyzer algorithm, Assumption regardin...

Assumption regarding to the Digital Differential Analyzer Algorithm The line generation by DDA is discussed merely for the first Quadrant, whether the line lies in the other q

Time based and presentation tools, Time Based and Presentation Tools In...

Time Based and Presentation Tools In such authoring systems, components and events are organized beside a timeline, along with resolutions as high as 1/30 second. Time based to

2d clipping, What is 2d clipping in computer graphics

What is 2d clipping in computer graphics

3d studio max -softwares for computer animation, 3DStudio Max -Softwares fo...

3DStudio Max -Softwares for computer animation The successor to 3-DStudio 3.0, 3-DStudio Max runs in WindowsNT. This is completely object-oriented, featuring new enhancements a

What is meant by scan code, What is meant by scan code? When a key is p...

What is meant by scan code? When a key is pressed on the keyboard, the keyboard controller places a code bear to the key pressed into a part of the memory known as the keyboard

Bezier cubic curves, Q.   What are Bezier cubic curves? Derive their proper...

Q.   What are Bezier cubic curves? Derive their properties. OR  What are Bezier cubic curves? Derive these properties. Also show that the sum of the blending functions is identical

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd