Carry out a perspective projection, Computer Graphics

Assignment Help:

Consider the line segment AB in 3-Dimentional parallel to the z-axis along with end points A (- 5,4,2) and also B (5,-6,18). Carry out a perspective projection upon the X=0 plane; here the eye is placed at (10, 0,10).

Solution: Suppose here that P (x, y, z) be any point in the space.

The parametric equation of a line beginning from E and passing via P is: E + t. (P - E), o < t < 1.

= (10,0,10) + t. [(x, y, z) - (10, 0, 10)]

= (10, 0,10) + t [(x - 10)], y (z - 10)]

= (t. (x - 10) + 10, t. y, t (z - 10) + 10)

Suppose a point P' can be obtained, as t = t*

∴P' = (x', y', z') = (t* (x - 10) + 10, t*.y, t*. (z - 10) + 10)

 Because the point P' lies on x = 0 plane as:

1898_Carry out a perspective projection 1.png

          Figure: (j)

= t* (x - 10) + 10 = 0

= t* =(- 10)/ (x - 10)

= P' = (x',y',z') = (0,((-10.y)/(x - 10)),(((-10)(z - 10))/(x - 10)), + 10)

(0, ((-10.y)/(x - 10)),((10x - 10z)/(x - 10)))

In terms of Homogeneous coordinate system;

P' = (x', y', z', 1) = ( 0, ((-y )/((x - 10) - 1)) ,  (x -z)/((x/10) - 1)), 1)

= (0, -y, x-z, ((x/10) - 1))

In Matrix form there is:

2067_Carry out a perspective projection 2.png

-------------------------(1)

In above equation (1) is the needed perspective transformation, that gives a coordinates of a projected point P' (x', y', z') on the x = 0 plane, whereas a point p (x, y, z) is viewed from E (10, 0, 10)

Currently, for the specified points A (-5, 4, 2) and B (5, -6, 18), A' and B' are their projection upon the x = 0 plane.

So now from Equation (1) we get:

1289_Carry out a perspective projection 3.png

= (0,-4, -7, ((-5/10) - 1))

= (0 , -40, -70, -15)

(0, 40/15, 70/15, 1)

Thus x1' = 0;  y1' = 2.67 ;    z1' = 4.67

As the same in:

137_Carry out a perspective projection 4..png

= (0, 60, - 130, - 5)

= (0, - 12, 26, 1)

 Thus x2' = 0 ;  y2' = - 12 ;    z2' = 26

Hence the projected points A' and B' of specified points A and B are:

A' = (x1', y1'z1') = (0, 2.67, 4.67)    and     B' = (x2', y2', z2') = (0, - 12, 26, 1)


Related Discussions:- Carry out a perspective projection

What will be the resulting rotation matrix, An object has to be rotated abo...

An object has to be rotated about an axis passing through the points (1,0 ,1), (1,3,1) .  What will be the resulting rotation matrix?    Solution: The axis is parallel to y axis

Other file formats and bmp-dib-rle file formats, Other File Formats BM...

Other File Formats BMP/DIB/RLE File Formats These are termed as device independent bitmap files. They exist in two various type formats: a) OS2 format and b) Windows

Scenes - polygon rendering and ray tracing methods, Scenes - polygon render...

Scenes - polygon rendering and ray tracing methods In the context of ray tracing, a scene is a set of objects and light sources which will be viewed through a camera. All of

Classic applications of digital video, The table as given below demonstrate...

The table as given below demonstrates possible values of such parameters for classic applications of digital video. Application                  Frame rate                  Dime

Softwares and hardwares for computer animation, Softwares and Hardwares for...

Softwares and Hardwares for Computer Animation The categories of both software as well as hardware needed to work on animation are now to be discussed. Computer animation can b

Concept of area subdivision method, Q.   Explain the concept of area subdiv...

Q.   Explain the concept of area subdivision method. Write the conditions, when no further subdivision is needed and how we can test these condition. Ans. Area Subdivision Th

Numerically-controlled machines - cad and cam, Numerically-Controlled Machi...

Numerically-Controlled Machines: Prior to the development of Computer-aided design, the manufacturing world adopted elements controlled through numbers and letters to fi

Applications of ray tracing - modeling and rendering , Applications of Ray ...

Applications of Ray Tracing Thus, you might ask, just what practical utilizes does ray tracing have: a) For vision research, simulation of real-world phenomena, b) Medica

Explain three dimensional transformations, Explain Three Dimensional Transf...

Explain Three Dimensional Transformations A 3D geometric transformation is utilized extensively in object modelling and rendering. 2D transformations are naturally extended to

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd