Carry out a perspective projection, Computer Graphics

Assignment Help:

Consider the line segment AB in 3-Dimentional parallel to the z-axis along with end points A (- 5,4,2) and also B (5,-6,18). Carry out a perspective projection upon the X=0 plane; here the eye is placed at (10, 0,10).

Solution: Suppose here that P (x, y, z) be any point in the space.

The parametric equation of a line beginning from E and passing via P is: E + t. (P - E), o < t < 1.

= (10,0,10) + t. [(x, y, z) - (10, 0, 10)]

= (10, 0,10) + t [(x - 10)], y (z - 10)]

= (t. (x - 10) + 10, t. y, t (z - 10) + 10)

Suppose a point P' can be obtained, as t = t*

∴P' = (x', y', z') = (t* (x - 10) + 10, t*.y, t*. (z - 10) + 10)

 Because the point P' lies on x = 0 plane as:

1898_Carry out a perspective projection 1.png

          Figure: (j)

= t* (x - 10) + 10 = 0

= t* =(- 10)/ (x - 10)

= P' = (x',y',z') = (0,((-10.y)/(x - 10)),(((-10)(z - 10))/(x - 10)), + 10)

(0, ((-10.y)/(x - 10)),((10x - 10z)/(x - 10)))

In terms of Homogeneous coordinate system;

P' = (x', y', z', 1) = ( 0, ((-y )/((x - 10) - 1)) ,  (x -z)/((x/10) - 1)), 1)

= (0, -y, x-z, ((x/10) - 1))

In Matrix form there is:

2067_Carry out a perspective projection 2.png

-------------------------(1)

In above equation (1) is the needed perspective transformation, that gives a coordinates of a projected point P' (x', y', z') on the x = 0 plane, whereas a point p (x, y, z) is viewed from E (10, 0, 10)

Currently, for the specified points A (-5, 4, 2) and B (5, -6, 18), A' and B' are their projection upon the x = 0 plane.

So now from Equation (1) we get:

1289_Carry out a perspective projection 3.png

= (0,-4, -7, ((-5/10) - 1))

= (0 , -40, -70, -15)

(0, 40/15, 70/15, 1)

Thus x1' = 0;  y1' = 2.67 ;    z1' = 4.67

As the same in:

137_Carry out a perspective projection 4..png

= (0, 60, - 130, - 5)

= (0, - 12, 26, 1)

 Thus x2' = 0 ;  y2' = - 12 ;    z2' = 26

Hence the projected points A' and B' of specified points A and B are:

A' = (x1', y1'z1') = (0, 2.67, 4.67)    and     B' = (x2', y2', z2') = (0, - 12, 26, 1)


Related Discussions:- Carry out a perspective projection

Crt - cathode ray tube, CRT - Cathode Ray Tube Electron gun is used...

CRT - Cathode Ray Tube Electron gun is used to send an electron beam aimed at a particular point on the screen. Deflection system is used to make the beam strike the screen

Important points for bresenham line generation algorithm, Important points ...

Important points for Bresenham Line Generation Algorithm Note: Bresenhams algorithm is generalised to lines along with arbitrary slopes with identifying the symmetry

Define polygon, Define polygon?  A polygon is any closed continues sequ...

Define polygon?  A polygon is any closed continues sequence of line segments i.e., a polyline whose last node point is similar as that of its first node point. The line segment

Light pen - input and output devices, Light Pen - input and output devices ...

Light Pen - input and output devices It is a pointing device. This has a light sensitive tip that is excited while the light is emitted and an illuminated point upon the disp

How many times will vertex appear in the intersection points, 1. For the po...

1. For the polygon shown in Figure on the next page, how many times will the vertex V 1 appear in the set of intersection points for the scan line passing through that point?  How

Achieve a perspective projection on the plane of unit cube, Achieve a persp...

Achieve a perspective projection on the z = 0 plane of the unit cube, demonstrated in Figure (l) from the cop at E (0, 0, 10) upon the z-axis. Figure: I 01:  currently c

Vector graphics, Vector Graphics: These are images which may be entirely d...

Vector Graphics: These are images which may be entirely described by using mathematical definitions. The image below demonstrates the principle. To the left you notice the image i

Region filling, what is region filling? give details

what is region filling? give details

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd