Carry out a perspective projection, Computer Graphics

Assignment Help:

Consider the line segment AB in 3-Dimentional parallel to the z-axis along with end points A (- 5,4,2) and also B (5,-6,18). Carry out a perspective projection upon the X=0 plane; here the eye is placed at (10, 0,10).

Solution: Suppose here that P (x, y, z) be any point in the space.

The parametric equation of a line beginning from E and passing via P is: E + t. (P - E), o < t < 1.

= (10,0,10) + t. [(x, y, z) - (10, 0, 10)]

= (10, 0,10) + t [(x - 10)], y (z - 10)]

= (t. (x - 10) + 10, t. y, t (z - 10) + 10)

Suppose a point P' can be obtained, as t = t*

∴P' = (x', y', z') = (t* (x - 10) + 10, t*.y, t*. (z - 10) + 10)

 Because the point P' lies on x = 0 plane as:

1898_Carry out a perspective projection 1.png

          Figure: (j)

= t* (x - 10) + 10 = 0

= t* =(- 10)/ (x - 10)

= P' = (x',y',z') = (0,((-10.y)/(x - 10)),(((-10)(z - 10))/(x - 10)), + 10)

(0, ((-10.y)/(x - 10)),((10x - 10z)/(x - 10)))

In terms of Homogeneous coordinate system;

P' = (x', y', z', 1) = ( 0, ((-y )/((x - 10) - 1)) ,  (x -z)/((x/10) - 1)), 1)

= (0, -y, x-z, ((x/10) - 1))

In Matrix form there is:

2067_Carry out a perspective projection 2.png

-------------------------(1)

In above equation (1) is the needed perspective transformation, that gives a coordinates of a projected point P' (x', y', z') on the x = 0 plane, whereas a point p (x, y, z) is viewed from E (10, 0, 10)

Currently, for the specified points A (-5, 4, 2) and B (5, -6, 18), A' and B' are their projection upon the x = 0 plane.

So now from Equation (1) we get:

1289_Carry out a perspective projection 3.png

= (0,-4, -7, ((-5/10) - 1))

= (0 , -40, -70, -15)

(0, 40/15, 70/15, 1)

Thus x1' = 0;  y1' = 2.67 ;    z1' = 4.67

As the same in:

137_Carry out a perspective projection 4..png

= (0, 60, - 130, - 5)

= (0, - 12, 26, 1)

 Thus x2' = 0 ;  y2' = - 12 ;    z2' = 26

Hence the projected points A' and B' of specified points A and B are:

A' = (x1', y1'z1') = (0, 2.67, 4.67)    and     B' = (x2', y2', z2') = (0, - 12, 26, 1)


Related Discussions:- Carry out a perspective projection

Approaches to area filling - output primitives, Approaches to Area Filling ...

Approaches to Area Filling  Some other approaches to area filling are   Scan line polygon fill algorithm Boundary fill algorithm Flood fill algorithm.

Method to draw an object by using four bézier curves, Suggest a method to d...

Suggest a method to draw an object as in figure using four Bézier curves of suitable degree Answer: Employ four quartic Bézier curves with the endpoint of one as the initial poi

Proof of subsequent properties of bezier curves, Proof of subsequent proper...

Proof of subsequent properties of Bezier curves Note: Proof of subsequent properties of Bezier curves is left as a work out for the students P' (0) = n (p 1 - p 0 ) P

Two point and three point perspective transformations, Two-Point and Three-...

Two-Point and Three-Point Perspective transformations The two-point perspective projection can be acquired by rotating about one of the principal axis only and projecting upon

Distinguish between bitblt and pixblt, Distinguish between bitBlt and pixBl...

Distinguish between bitBlt and pixBlt?  Raster functions that manipulate rectangular pixel arrays are usually referred to as raster ops. Moving a block of pixels from one locat

Accessories, Accessories : A Screen Grabber is a necessary accessory. Bitm...

Accessories : A Screen Grabber is a necessary accessory. Bitmap images are so common in multimedia, that it is important to have a tool for grabbing all or part of the screen disp

Implement the boundary fill and flood fill algorithm, 1. Implement the boun...

1. Implement the boundary fill algorithm and flood fill algorithm in C-language and use your code to fill two different types of closed areas such as  i)  A Circle ii)  A sel

Devi, Explain the 3d transformations

Explain the 3d transformations

Udp datagram communication and tcp stream communication, Question: a) D...

Question: a) Datagram packet delivery and Virtual circuit packet delivery are two approaches to the delivery of packets by the network layer. Explain. b) What is the meaning

Polygon clipping algorithm, Write a polygon clipping algorithm to clip a po...

Write a polygon clipping algorithm to clip a polygon against rectangular clipping are. Read the vertices of polygon to be clipped. 2. Read the coordinates of the rectangular cl

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd