Carry out a perspective projection, Computer Graphics

Assignment Help:

Consider the line segment AB in 3-Dimentional parallel to the z-axis along with end points A (- 5,4,2) and also B (5,-6,18). Carry out a perspective projection upon the X=0 plane; here the eye is placed at (10, 0,10).

Solution: Suppose here that P (x, y, z) be any point in the space.

The parametric equation of a line beginning from E and passing via P is: E + t. (P - E), o < t < 1.

= (10,0,10) + t. [(x, y, z) - (10, 0, 10)]

= (10, 0,10) + t [(x - 10)], y (z - 10)]

= (t. (x - 10) + 10, t. y, t (z - 10) + 10)

Suppose a point P' can be obtained, as t = t*

∴P' = (x', y', z') = (t* (x - 10) + 10, t*.y, t*. (z - 10) + 10)

 Because the point P' lies on x = 0 plane as:

1898_Carry out a perspective projection 1.png

          Figure: (j)

= t* (x - 10) + 10 = 0

= t* =(- 10)/ (x - 10)

= P' = (x',y',z') = (0,((-10.y)/(x - 10)),(((-10)(z - 10))/(x - 10)), + 10)

(0, ((-10.y)/(x - 10)),((10x - 10z)/(x - 10)))

In terms of Homogeneous coordinate system;

P' = (x', y', z', 1) = ( 0, ((-y )/((x - 10) - 1)) ,  (x -z)/((x/10) - 1)), 1)

= (0, -y, x-z, ((x/10) - 1))

In Matrix form there is:

2067_Carry out a perspective projection 2.png

-------------------------(1)

In above equation (1) is the needed perspective transformation, that gives a coordinates of a projected point P' (x', y', z') on the x = 0 plane, whereas a point p (x, y, z) is viewed from E (10, 0, 10)

Currently, for the specified points A (-5, 4, 2) and B (5, -6, 18), A' and B' are their projection upon the x = 0 plane.

So now from Equation (1) we get:

1289_Carry out a perspective projection 3.png

= (0,-4, -7, ((-5/10) - 1))

= (0 , -40, -70, -15)

(0, 40/15, 70/15, 1)

Thus x1' = 0;  y1' = 2.67 ;    z1' = 4.67

As the same in:

137_Carry out a perspective projection 4..png

= (0, 60, - 130, - 5)

= (0, - 12, 26, 1)

 Thus x2' = 0 ;  y2' = - 12 ;    z2' = 26

Hence the projected points A' and B' of specified points A and B are:

A' = (x1', y1'z1') = (0, 2.67, 4.67)    and     B' = (x2', y2', z2') = (0, - 12, 26, 1)


Related Discussions:- Carry out a perspective projection

Steps of cohen sutherland line clipping algorithm, Cohen Sutherland line cl...

Cohen Sutherland line clipping algorithm The algorithm uses the following main steps Divide the entire plane into nine disjoint regions using the four window boundaries

Important point about the de casteljeau algorithm, Important point about th...

Important point about the De casteljeau algorithm 1)      Bezier Curve: P (u) =    ................     (1) Here B n,i (u) = n c i u i (1 - u) n-i        ..

Sequence of steps to generate a full animation, Sequence of Steps to Genera...

Sequence of Steps to Generate a Full Animation The sequence of steps to generate a full animation would be as given below: 1)  Improve a script or story for the animation.

Briefly explain how you could create the gun barrel effect, Question 1: ...

Question 1: (a) Describe what you understand by Rotoscoping in Graphic effects. Give details how Rotoscoping could be achieved in After Effects CS3. (b) Using one algorithm

Refresh buffer, what is refresh buffer/ identify the content and organisati...

what is refresh buffer/ identify the content and organisation of the refresh buffer for the case of raster display and vector display.

What is graphics, What is Graphics It is a term that refers to any com...

What is Graphics It is a term that refers to any computer device or program which makes a computer able of displaying and manipulating pictures. The name also refers to the im

Basic approaches for visible surface determination, Basic Approaches for Vi...

Basic Approaches for Visible Surface Determination There are two basic approaches for visible-surface determination, as per if they deal along with their projected images or a

Liang b arsky line clipping algorithm, Write the Liang B arsky line clippin...

Write the Liang B arsky line clipping algorithm. Why is Liang Barsky algorithm more efficient than the Cohen Sutherland algorithm?  Liang Barsky Line Clipping: Faster line cl

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd