Carry out a perspective projection, Computer Graphics

Assignment Help:

Consider the line segment AB in 3-Dimentional parallel to the z-axis along with end points A (- 5,4,2) and also B (5,-6,18). Carry out a perspective projection upon the X=0 plane; here the eye is placed at (10, 0,10).

Solution: Suppose here that P (x, y, z) be any point in the space.

The parametric equation of a line beginning from E and passing via P is: E + t. (P - E), o < t < 1.

= (10,0,10) + t. [(x, y, z) - (10, 0, 10)]

= (10, 0,10) + t [(x - 10)], y (z - 10)]

= (t. (x - 10) + 10, t. y, t (z - 10) + 10)

Suppose a point P' can be obtained, as t = t*

∴P' = (x', y', z') = (t* (x - 10) + 10, t*.y, t*. (z - 10) + 10)

 Because the point P' lies on x = 0 plane as:

1898_Carry out a perspective projection 1.png

          Figure: (j)

= t* (x - 10) + 10 = 0

= t* =(- 10)/ (x - 10)

= P' = (x',y',z') = (0,((-10.y)/(x - 10)),(((-10)(z - 10))/(x - 10)), + 10)

(0, ((-10.y)/(x - 10)),((10x - 10z)/(x - 10)))

In terms of Homogeneous coordinate system;

P' = (x', y', z', 1) = ( 0, ((-y )/((x - 10) - 1)) ,  (x -z)/((x/10) - 1)), 1)

= (0, -y, x-z, ((x/10) - 1))

In Matrix form there is:

2067_Carry out a perspective projection 2.png

-------------------------(1)

In above equation (1) is the needed perspective transformation, that gives a coordinates of a projected point P' (x', y', z') on the x = 0 plane, whereas a point p (x, y, z) is viewed from E (10, 0, 10)

Currently, for the specified points A (-5, 4, 2) and B (5, -6, 18), A' and B' are their projection upon the x = 0 plane.

So now from Equation (1) we get:

1289_Carry out a perspective projection 3.png

= (0,-4, -7, ((-5/10) - 1))

= (0 , -40, -70, -15)

(0, 40/15, 70/15, 1)

Thus x1' = 0;  y1' = 2.67 ;    z1' = 4.67

As the same in:

137_Carry out a perspective projection 4..png

= (0, 60, - 130, - 5)

= (0, - 12, 26, 1)

 Thus x2' = 0 ;  y2' = - 12 ;    z2' = 26

Hence the projected points A' and B' of specified points A and B are:

A' = (x1', y1'z1') = (0, 2.67, 4.67)    and     B' = (x2', y2', z2') = (0, - 12, 26, 1)


Related Discussions:- Carry out a perspective projection

Area subdivision method - visible surface detection, Area subdivision Metho...

Area subdivision Method - Visible Surface Detection What are the circumstances to be fulfilled, in Area-subdivision method, thus a surface not to be divided in addition? S

Crt, refreh buffer

refreh buffer

Chain of responsibility and the iterator patterns, QUESTION (a) Conside...

QUESTION (a) Consider the observer, façade, chain of responsibility and the iterator patterns. i) Give detailed descriptions and draw their structures. ii) Explain the in

Explain the advantage and disadvantage of raster crt, Explain the advantage...

Explain the advantage and disadvantage of Raster CRT Advantages Allows solids, not just wireframes Leverages low-cost CRT technology (i.e., TVs) Bright, i.e.

Write c program which takes points as input from mouse click, Write a C pro...

Write a C program which takes points as input from mouse clicks (left button) and then performs an action.  Apply your program to generate a closed polygon as follows: Every time a

What happens while two polygons have similar z value , What happens while t...

What happens while two polygons have similar z value and the z-buffer algorithm is utilized? Solution : z-buffer algorithms, varies colors at a pixel if z(x,y)

Display necessitate to store z-buffer?, Suppose here, one allows 256 depth ...

Suppose here, one allows 256 depth value levels to be employed. Approximately how much memory would a 512x512 pixel display necessitate to store z-buffer? Solution : A system w

Painting and drawing, Painting and Drawing While we talk about graphic...

Painting and Drawing While we talk about graphics, we mean pictures can be either photographs or illustrations. If you want to acquire graphics into a Web page or multimedia r

Transformation for 3-d shearing, Transformation for 3-D Shearing 2-dim...

Transformation for 3-D Shearing 2-dimensional xy-shearing transformation, as explained in equation, can also be simply extended to 3-dimensional case. All coordinates are tran

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd