Cam-cam illustrations, Mechanical Engineering

Assignment Help:

Cam

This is a mechanical member that imparts motion to another member called follower.

Illustration:

A cam is rotating at regular speed of 1200 rpm in the clockwise direction. This operates a roller following of 20 mm diameter having the data given as:

Minimum diameter of the cam = 60 mm
Maximum lift = 50 mm
Angle for rise with equivalent uniform acceleration and retardation = 120o
Angle for dwell after rise = 60o
Angle for return having equal uniform acceleration and retardation = 90o

Find out maximum acceleration & maximum velocity of the follower throughout rise and return.

Solution:

Maximum lift (L) = 50 mm, Angle for rise (θo) = 120o, Angle for return (θr) = 90o
The first step is to draw displacement diagram for the follower by supposing suitable scale.

(a) While follower axis passes through cam centre

(i) Draw a circle having radius equivalent to minimum radius of the cam to the scale that was decided for displacement diagram. Draw another circle having the similar centre having radius equal to (min. radius of cam + roller radius).

(ii) Show the sense of rotation & initial position of the roller.

(iii) Supposing cam stationary, follower is taken approximated it in the sense opposite to the sense of rotation of the cam. Beginning from initial location, mark angle for rise or ascent that means θo. After that mark for dwell period & then mark for return or descent angle say θr.

(iv) Divide angles θo & θr into similar number of equal pars like this is done in displacement diagram and in this case this is 8 equivalent parts. Draw radial lines.

(v) On extended radial lines transfer the equivalent displacement of the follower from displacement diagram above, the, prime circle (base circle radius + roller radius), that means 1 – 1′, 2 – 2′, etc.

(vi) Draw a series of arcs of radii equivalent to roller radius to defined roller positions from points 1′, 2′, 3′, 4′, etc.

(vii) Draw a smooth curve tangential to every arc of these to obtain the required cam profile.

806_1.jpg

Maximum velocity during rise =

1911_2.jpg

 Maximum velocity during return =

439_3.jpg

  Maximum acceleration during rise =

2124_4.jpg

 
Acceleration during return =

2087_5.jpg

 
(b) While follower axis is eccentric to the right

(i) Draw three concentric circles having radii equivalent to eccentricity, minimum cam radius and (minimum cam radius + roller radius).
(ii) Cam is supposed stationary, mark initial location of the follower that is tangential to the eccentricity circle, that means A – O′. The follower is taken about the cam in the sense opposite to the cam rotation. The follower axis shall always remain tangential to the eccentric circle.
(iii) Join O – O′. Having this line a zero angle line, mark angle for rise θo, dwell angle & angle for return θr.
(iv) Divide angle for rise θo & angle for return θr into similar number of equivalent parts like it is done in displacement diagram & in this case this is 8 equivalent parts and gets points, 1, 2, 3 . . . 17 on the prime circle.
(v)    Draw tangents on the eccentricity circle from points 1, 2, 3, etc.
On the extended tangent lines, transfer the equivalent displacement of the follower from displacement diagram above prime circle that is 1 – 1′, 2 – 2′, etc. Repeat (e) & (f as denoted in past (a) of this instance to get the needed cam profile.

 


Related Discussions:- Cam-cam illustrations

Basic definitions - air transportation, BASIC DEFINITIONS - Air transportat...

BASIC DEFINITIONS - Air transportation: A civil engineer dealing with airport engineering shall have to know the precise meaning of some terms. These are defined below :

Determine the pressure point for hydrostatic force, The 300 kg, 8-m-wide re...

The 300 kg, 8-m-wide rectangular gate shown in the figure is hinged at B and leans against the floor at A making an angle of 60° with the horizontal. The gate is to be open from it

Machine and tool selection , Machine and Tool Selection The quality of...

Machine and Tool Selection The quality of a product largely depends on the type of machine, the type of process, machining conditions and the right selection of tools. The cur

Determine the maximum pressure applied inside the shell, Determine the maxi...

Determine the maximum pressure applied inside the shell: A thin spherical shell of 1.5 m diameter is built by joining steel plates of 8 mm thickness by riveting. The efficienc

PLC problems, 3. How to illustrate the meaning of control system in control...

3. How to illustrate the meaning of control system in control and automation system? 4. How to illustrate the major role of CPU in a PLC and what is the major role of CPU? 5. How

Design, Hi I am new tutor here Pankaj kumar I got the mail for the verif...

Hi I am new tutor here Pankaj kumar I got the mail for the verification and i regitered now . But how can i get the sample assignment for the further process.

Operations management, case study for factors affecting process design deci...

case study for factors affecting process design decisions

Environments can cause deterioration of foundation, Environments can cause ...

Environments can cause deterioration of foundation. Can you explain this in the following cases? a) A column footing which was stable for a number of years suddenly gave way. T

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd