Cam-cam illustrations, Mechanical Engineering

Assignment Help:

Cam

This is a mechanical member that imparts motion to another member called follower.

Illustration:

A cam is rotating at regular speed of 1200 rpm in the clockwise direction. This operates a roller following of 20 mm diameter having the data given as:

Minimum diameter of the cam = 60 mm
Maximum lift = 50 mm
Angle for rise with equivalent uniform acceleration and retardation = 120o
Angle for dwell after rise = 60o
Angle for return having equal uniform acceleration and retardation = 90o

Find out maximum acceleration & maximum velocity of the follower throughout rise and return.

Solution:

Maximum lift (L) = 50 mm, Angle for rise (θo) = 120o, Angle for return (θr) = 90o
The first step is to draw displacement diagram for the follower by supposing suitable scale.

(a) While follower axis passes through cam centre

(i) Draw a circle having radius equivalent to minimum radius of the cam to the scale that was decided for displacement diagram. Draw another circle having the similar centre having radius equal to (min. radius of cam + roller radius).

(ii) Show the sense of rotation & initial position of the roller.

(iii) Supposing cam stationary, follower is taken approximated it in the sense opposite to the sense of rotation of the cam. Beginning from initial location, mark angle for rise or ascent that means θo. After that mark for dwell period & then mark for return or descent angle say θr.

(iv) Divide angles θo & θr into similar number of equal pars like this is done in displacement diagram and in this case this is 8 equivalent parts. Draw radial lines.

(v) On extended radial lines transfer the equivalent displacement of the follower from displacement diagram above, the, prime circle (base circle radius + roller radius), that means 1 – 1′, 2 – 2′, etc.

(vi) Draw a series of arcs of radii equivalent to roller radius to defined roller positions from points 1′, 2′, 3′, 4′, etc.

(vii) Draw a smooth curve tangential to every arc of these to obtain the required cam profile.

806_1.jpg

Maximum velocity during rise =

1911_2.jpg

 Maximum velocity during return =

439_3.jpg

  Maximum acceleration during rise =

2124_4.jpg

 
Acceleration during return =

2087_5.jpg

 
(b) While follower axis is eccentric to the right

(i) Draw three concentric circles having radii equivalent to eccentricity, minimum cam radius and (minimum cam radius + roller radius).
(ii) Cam is supposed stationary, mark initial location of the follower that is tangential to the eccentricity circle, that means A – O′. The follower is taken about the cam in the sense opposite to the cam rotation. The follower axis shall always remain tangential to the eccentric circle.
(iii) Join O – O′. Having this line a zero angle line, mark angle for rise θo, dwell angle & angle for return θr.
(iv) Divide angle for rise θo & angle for return θr into similar number of equivalent parts like it is done in displacement diagram & in this case this is 8 equivalent parts and gets points, 1, 2, 3 . . . 17 on the prime circle.
(v)    Draw tangents on the eccentricity circle from points 1, 2, 3, etc.
On the extended tangent lines, transfer the equivalent displacement of the follower from displacement diagram above prime circle that is 1 – 1′, 2 – 2′, etc. Repeat (e) & (f as denoted in past (a) of this instance to get the needed cam profile.

 


Related Discussions:- Cam-cam illustrations

Determine least value of work, Determine least value of work: Q . De...

Determine least value of work: Q . Determine least value of W as shown in the figure given below to keep the system of connected bodies in equilibrium µ for surface of c

Estimate what fraction of heat loss by the fin, A tube assembly constructed...

A tube assembly constructed of Cu with an inside diameter of 1.25 cm, wall thickness of 0.8 mm and circumferential fins around the periphery. The fins have thickness of 3 mm, and a

Up milling and down milling, table representing the differences between up ...

table representing the differences between up milling and down milling

Governors, How a governor works? I mean how it''s regulate the speed of for...

How a governor works? I mean how it''s regulate the speed of for example electricity generators?

Determine the velocity, Question The three freight cars are rolling alo...

Question The three freight cars are rolling along the horizontal track with the velocities shown in the Figure. After the impacts occur the three cars become coupled together a

Pressure and temperature in unfired pressure vessels, Q. Pressure and Tempe...

Q. Pressure and Temperature in Unfired pressure vessels? The design pressures and coincident maximum and minimum metal temperature, shall be determined by carefully considering

Instantaneous stress formula, Ask quesinstantaneous stress formulation #Min...

Ask quesinstantaneous stress formulation #Minimum 100 words accepted#

What is the objective of hydrostatic sensor paver machine, What is the obje...

What is the objective of hydrostatic sensor paver machine To eliminate the problem in screw conveyer extension of hydrostatic sensor paver machine as per screed width" The p

Open belt drive, Open belt drive: An open belt drive connects the two...

Open belt drive: An open belt drive connects the two pulleys 120cm and 50cm diameter on parallel shafts which are apart 4m. The maximum tension in belt is 1855.3N. Coefficien

Velocity and pressure, why the pressure will reduce when the velocity incre...

why the pressure will reduce when the velocity increases

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd