Calculates partial sum of an integer, Data Structure & Algorithms

Assignment Help:

Now, consider a function that calculates partial sum of an integer n. int psum(int n)

{

int i, partial_sum;

partial_sum = 0;                                           /* Line 1 */

for (i = 1; i <= n; i++) {                                /* Line 2 */

partial_sum = partial_sum + i*i;            /* Line 3 */

}

return partial_sum;                                                 /* Line 4 */

}

This function returns the sum by i = 1 to n of i squared, which means p sum = 12 + 22+ 32

+ .............  + n2 .

Ø  As we ought to determine the running time for each of statement in this program, we ought to count the number of statements which are executed in this process. The code at line 1 & line 4 are one statement each. Actually the for loop on line 2 are 2n+2 statements:

  • i = 1; statement: simple assignment, therefore one statement.
  • i <= n; statement is executed once for each value of i from 1 to n+1 (until the condition becomes false). The statement is executed n+1 times.
  • i++ is executed once for each of execution of body of the loop. It is executed for n times.

Therefore, the sum is equal to 1+ (n+1) + n+1 = 2n+ 3 times.

In terms of big-O notation described above, this function is O (n), since if we choose c=3, then we notice that cn > 2n+3. As we have already illustrious earlier, big-O notation only provides a upper bound to the function, it is also O(nlog(n)) & O(n2), since n2 > nlog(n) > 2n+3. However, we will select the smallest function which describes the order of the function and it is O (n).

Through looking at the definition of Omega notation & Theta notation, it is also apparent that it is of Θ(n), and thus ?(n) too. Because if we select c=1, then we see that cn < 2n+3, therefore ?(n) . Since 2n+3 = O(n), & 2n+3 = ?(n), this  implies that 2n+3 = Θ(n) , too.

Again it is reiterated here that smaller order terms and constants may be avoided while describing asymptotic notation. For instance, if f(n) = 4n+6 rather than f(n) = 2n +3 in terms of big-O, ? and Θ, It does not modify the order of the function. The function f(n) = 4n+6 = O(n) (through choosing c appropriately as 5); 4n+6 = ?(n) (through choosing c = 1), and thus 4n+6 = Θ(n). The spirit of this analysis is that in these asymptotic notation, we may count a statement as one, and should not worry regarding their relative execution time that may based on several hardware and other implementation factors, as long as this is of the order of 1, that means O(1).


Related Discussions:- Calculates partial sum of an integer

Algorithm to merge two sorted arrays with third array, Q. Write down an alg...

Q. Write down an algorithm to merge the two sorted arrays into the third array. Do  not perform the sort function in the third array.                           Ans: void m

The game tree, An interesting application or implementation of trees is the...

An interesting application or implementation of trees is the playing of games such as tie-tac-toe, chess, nim, kalam, chess, go etc. We can depict the sequence of possible moves

Methods, what is folding method?

what is folding method?

Implementation of queue, For a queue a physical analogy is a line at bookin...

For a queue a physical analogy is a line at booking counter. At booking counter, customers go to the rear (end) of the line & customers are attended to several services from the fr

Analysis of algorithms, A common person's faith is that a computer can do a...

A common person's faith is that a computer can do anything. It is far from truth. In realism computer can carry out only definite predefined instructions. The formal illustration o

Sorting algorithm for singly linked lists, Q. Which sorting algorithm can b...

Q. Which sorting algorithm can be easily adaptable for singly linked lists? Explain your answer as well.        Ans: The simple Insertion sort is sim

Memory mapping, lower triangular matrix and upper triangular matrix

lower triangular matrix and upper triangular matrix

Define techniques of dry running of flowcharts, Explain the term- Dry runni...

Explain the term- Dry running of flowcharts  Dry running of flowcharts is essentially a technique to: Determine output for a known set of data to check it carries out th

Pseudo code, I need help writing a pseudocode for my assignment can anyone ...

I need help writing a pseudocode for my assignment can anyone help?

Explain the interfaces in ruby, Explain the Interfaces in Ruby Recall...

Explain the Interfaces in Ruby Recall that in object-oriented programming, an interface is a collection of abstract operations that cannot be instantiated. Even though Ruby i

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd