Calculates partial sum of an integer, Data Structure & Algorithms

Assignment Help:

Now, consider a function that calculates partial sum of an integer n. int psum(int n)

{

int i, partial_sum;

partial_sum = 0;                                           /* Line 1 */

for (i = 1; i <= n; i++) {                                /* Line 2 */

partial_sum = partial_sum + i*i;            /* Line 3 */

}

return partial_sum;                                                 /* Line 4 */

}

This function returns the sum by i = 1 to n of i squared, which means p sum = 12 + 22+ 32

+ .............  + n2 .

Ø  As we ought to determine the running time for each of statement in this program, we ought to count the number of statements which are executed in this process. The code at line 1 & line 4 are one statement each. Actually the for loop on line 2 are 2n+2 statements:

  • i = 1; statement: simple assignment, therefore one statement.
  • i <= n; statement is executed once for each value of i from 1 to n+1 (until the condition becomes false). The statement is executed n+1 times.
  • i++ is executed once for each of execution of body of the loop. It is executed for n times.

Therefore, the sum is equal to 1+ (n+1) + n+1 = 2n+ 3 times.

In terms of big-O notation described above, this function is O (n), since if we choose c=3, then we notice that cn > 2n+3. As we have already illustrious earlier, big-O notation only provides a upper bound to the function, it is also O(nlog(n)) & O(n2), since n2 > nlog(n) > 2n+3. However, we will select the smallest function which describes the order of the function and it is O (n).

Through looking at the definition of Omega notation & Theta notation, it is also apparent that it is of Θ(n), and thus ?(n) too. Because if we select c=1, then we see that cn < 2n+3, therefore ?(n) . Since 2n+3 = O(n), & 2n+3 = ?(n), this  implies that 2n+3 = Θ(n) , too.

Again it is reiterated here that smaller order terms and constants may be avoided while describing asymptotic notation. For instance, if f(n) = 4n+6 rather than f(n) = 2n +3 in terms of big-O, ? and Θ, It does not modify the order of the function. The function f(n) = 4n+6 = O(n) (through choosing c appropriately as 5); 4n+6 = ?(n) (through choosing c = 1), and thus 4n+6 = Θ(n). The spirit of this analysis is that in these asymptotic notation, we may count a statement as one, and should not worry regarding their relative execution time that may based on several hardware and other implementation factors, as long as this is of the order of 1, that means O(1).


Related Discussions:- Calculates partial sum of an integer

Define about the class invariant, Define about the class invariant A cl...

Define about the class invariant A class invariant may not be true during execution of a public operation though it should be true between executions of public operations. For

What is binary space partition, Binary Space Partition A binary space-p...

Binary Space Partition A binary space-partitioning (BSP) tree is an efficient method for determining object visibility by painting surfaces onto the screen from back to front,

Complexity classes, Complexity classes All decision problems fall in se...

Complexity classes All decision problems fall in sets of comparable complexity, called as complexity classes. The complexity class P is the set of decision problems which ca

Simplifying assumptions of wire frame representation, Simplifying Assumptio...

Simplifying Assumptions of wire frame representation Neglect colour - consider Intensity: For now we shall forget about colour and restrict our discussion just to the intensi

Sorting algorithm for singly linked lists, Q. Which sorting algorithm can b...

Q. Which sorting algorithm can be easily adaptable for singly linked lists? Explain your answer as well.        Ans: The simple Insertion sort is sim

Analyze an algorithm, In order to analyze an algorithm is to find out the a...

In order to analyze an algorithm is to find out the amount of resources (like time & storage) that are utilized to execute. Mostly algorithms are designed to work along with inputs

Row major storage, Q. Take an array A[20, 10] of your own. Suppose 4 words ...

Q. Take an array A[20, 10] of your own. Suppose 4 words per memory cell and the base address of array A is 100. Find the address of A[11, 5] supposed row major storage.

Deletion of an element from the linear array, Program will demonstrate dele...

Program will demonstrate deletion of an element from the linear array /* declaration of delete_list function */ voiddelete_list(list *, int); /* definition of delete_list

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd