Calculates partial sum of an integer, Data Structure & Algorithms

Assignment Help:

Now, consider a function that calculates partial sum of an integer n. int psum(int n)

{

int i, partial_sum;

partial_sum = 0;                                           /* Line 1 */

for (i = 1; i <= n; i++) {                                /* Line 2 */

partial_sum = partial_sum + i*i;            /* Line 3 */

}

return partial_sum;                                                 /* Line 4 */

}

This function returns the sum by i = 1 to n of i squared, which means p sum = 12 + 22+ 32

+ .............  + n2 .

Ø  As we ought to determine the running time for each of statement in this program, we ought to count the number of statements which are executed in this process. The code at line 1 & line 4 are one statement each. Actually the for loop on line 2 are 2n+2 statements:

  • i = 1; statement: simple assignment, therefore one statement.
  • i <= n; statement is executed once for each value of i from 1 to n+1 (until the condition becomes false). The statement is executed n+1 times.
  • i++ is executed once for each of execution of body of the loop. It is executed for n times.

Therefore, the sum is equal to 1+ (n+1) + n+1 = 2n+ 3 times.

In terms of big-O notation described above, this function is O (n), since if we choose c=3, then we notice that cn > 2n+3. As we have already illustrious earlier, big-O notation only provides a upper bound to the function, it is also O(nlog(n)) & O(n2), since n2 > nlog(n) > 2n+3. However, we will select the smallest function which describes the order of the function and it is O (n).

Through looking at the definition of Omega notation & Theta notation, it is also apparent that it is of Θ(n), and thus ?(n) too. Because if we select c=1, then we see that cn < 2n+3, therefore ?(n) . Since 2n+3 = O(n), & 2n+3 = ?(n), this  implies that 2n+3 = Θ(n) , too.

Again it is reiterated here that smaller order terms and constants may be avoided while describing asymptotic notation. For instance, if f(n) = 4n+6 rather than f(n) = 2n +3 in terms of big-O, ? and Θ, It does not modify the order of the function. The function f(n) = 4n+6 = O(n) (through choosing c appropriately as 5); 4n+6 = ?(n) (through choosing c = 1), and thus 4n+6 = Θ(n). The spirit of this analysis is that in these asymptotic notation, we may count a statement as one, and should not worry regarding their relative execution time that may based on several hardware and other implementation factors, as long as this is of the order of 1, that means O(1).


Related Discussions:- Calculates partial sum of an integer

Recursion, i need help in java recursion assignment.

i need help in java recursion assignment.

Determine about the push operation, Determine about the push operation ...

Determine about the push operation A Container may or may not be accessible by keys, so it can't make assumptions about element retrieval methods (for example, it cannot have a

Problem logicall, Given a list containing Province, CustomerName and SalesV...

Given a list containing Province, CustomerName and SalesValue (sorted by Province and CustomerName), describe an algorithm you could use that would output each CustomerName and Sal

Graphs, c program to represent a graph as an adjacency multilist form

c program to represent a graph as an adjacency multilist form

Queue be represented by circular linked list, Q. Can a Queue be represented...

Q. Can a Queue be represented by circular linked list with only one pointer pointing to the tail of the queue? Substantiate your answer using an example. A n s . Yes a

Simulation of queues, Simulation is the process of making an abstract model...

Simulation is the process of making an abstract model of a real world situation in order to be aware of the effect of modifications and alterations and the effect of introducing nu

Tree, tree is graph or not

tree is graph or not

Java, Ask consider the file name cars.text each line in the file contains i...

Ask consider the file name cars.text each line in the file contains information about a car ( year,company,manufacture,model name,type) 1-read the file 2-add each car which is repr

Explain depth-first traversal, Depth-first traversal A depth-first t...

Depth-first traversal A depth-first traversal of a tree visit a node and then recursively visits the subtrees of that node. Likewise, depth-first traversal of a graph visits

Searching, Searching is the procedure of looking for something: Finding one...

Searching is the procedure of looking for something: Finding one piece of data that has been stored inside a whole group of data. It is frequently the most time-consuming part of m

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd