Calculates partial sum of an integer, Data Structure & Algorithms

Assignment Help:

Now, consider a function that calculates partial sum of an integer n. int psum(int n)

{

int i, partial_sum;

partial_sum = 0;                                           /* Line 1 */

for (i = 1; i <= n; i++) {                                /* Line 2 */

partial_sum = partial_sum + i*i;            /* Line 3 */

}

return partial_sum;                                                 /* Line 4 */

}

This function returns the sum by i = 1 to n of i squared, which means p sum = 12 + 22+ 32

+ .............  + n2 .

Ø  As we ought to determine the running time for each of statement in this program, we ought to count the number of statements which are executed in this process. The code at line 1 & line 4 are one statement each. Actually the for loop on line 2 are 2n+2 statements:

  • i = 1; statement: simple assignment, therefore one statement.
  • i <= n; statement is executed once for each value of i from 1 to n+1 (until the condition becomes false). The statement is executed n+1 times.
  • i++ is executed once for each of execution of body of the loop. It is executed for n times.

Therefore, the sum is equal to 1+ (n+1) + n+1 = 2n+ 3 times.

In terms of big-O notation described above, this function is O (n), since if we choose c=3, then we notice that cn > 2n+3. As we have already illustrious earlier, big-O notation only provides a upper bound to the function, it is also O(nlog(n)) & O(n2), since n2 > nlog(n) > 2n+3. However, we will select the smallest function which describes the order of the function and it is O (n).

Through looking at the definition of Omega notation & Theta notation, it is also apparent that it is of Θ(n), and thus ?(n) too. Because if we select c=1, then we see that cn < 2n+3, therefore ?(n) . Since 2n+3 = O(n), & 2n+3 = ?(n), this  implies that 2n+3 = Θ(n) , too.

Again it is reiterated here that smaller order terms and constants may be avoided while describing asymptotic notation. For instance, if f(n) = 4n+6 rather than f(n) = 2n +3 in terms of big-O, ? and Θ, It does not modify the order of the function. The function f(n) = 4n+6 = O(n) (through choosing c appropriately as 5); 4n+6 = ?(n) (through choosing c = 1), and thus 4n+6 = Θ(n). The spirit of this analysis is that in these asymptotic notation, we may count a statement as one, and should not worry regarding their relative execution time that may based on several hardware and other implementation factors, as long as this is of the order of 1, that means O(1).


Related Discussions:- Calculates partial sum of an integer

High-level and bubble algorithm , 1. Give both a high-level algorithm and a...

1. Give both a high-level algorithm and an implementation (\bubble diagram") of a Turing machine for the language in Exercise 3.8 (b) on page 160. Use the ' notation to show the co

Perform inorder, QUESTION (a) Construct a binary tree for the following...

QUESTION (a) Construct a binary tree for the following numbers assuming that a number greater than the node (starting from the root) goes to the left else it goes to the right.

Procedure of analysis of algorithm, Example 1:  Following are Simple sequen...

Example 1:  Following are Simple sequence of statements Statement 1;  Statement 2; ... ... Statement k; The entire time can be found out through adding the times for

Write a program for linear search, In the book the following methods are pr...

In the book the following methods are presented: static void selectionSort(Comparable[] list) static void insertionSort(Comparable[] list) static boolean linearSearch(Comparable

Demonstration of polynomial using linked list, Demonstration of Polynomial ...

Demonstration of Polynomial using Linked List # include # include Struct link { Char sign; intcoef; int expo; struct link *next; }; Typedefstruct link

The two famous methods for traversing, The two famous methods for traversin...

The two famous methods for traversing are:- a) Depth first traversal b) Breadth first

What do you understand by tree traversal, What do you understand by tree tr...

What do you understand by tree traversal? The algorithm walks by the tree data structure and performs some computation at everynode in the tree. This process of walking by the

C++ function, Write c++ function to traverse the threaded binary tree in in...

Write c++ function to traverse the threaded binary tree in inorder traversal

Comparisons between linear and binary search, Comparative Study of Linear a...

Comparative Study of Linear and Binary Search Binary search is lots quicker than linear search. Some comparisons are following: NUMBER OF ARRAY ELEMENTS EXAMINED array

How do you find the complexity of an algorithm, How do you find the complex...

How do you find the complexity of an algorithm?  Complexity of an algorithm is the measure of analysis of algorithm. Analyzing an algorithm means predicting the resources that

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd