Calculates partial sum of an integer, Data Structure & Algorithms

Assignment Help:

Now, consider a function that calculates partial sum of an integer n. int psum(int n)

{

int i, partial_sum;

partial_sum = 0;                                           /* Line 1 */

for (i = 1; i <= n; i++) {                                /* Line 2 */

partial_sum = partial_sum + i*i;            /* Line 3 */

}

return partial_sum;                                                 /* Line 4 */

}

This function returns the sum by i = 1 to n of i squared, which means p sum = 12 + 22+ 32

+ .............  + n2 .

Ø  As we ought to determine the running time for each of statement in this program, we ought to count the number of statements which are executed in this process. The code at line 1 & line 4 are one statement each. Actually the for loop on line 2 are 2n+2 statements:

  • i = 1; statement: simple assignment, therefore one statement.
  • i <= n; statement is executed once for each value of i from 1 to n+1 (until the condition becomes false). The statement is executed n+1 times.
  • i++ is executed once for each of execution of body of the loop. It is executed for n times.

Therefore, the sum is equal to 1+ (n+1) + n+1 = 2n+ 3 times.

In terms of big-O notation described above, this function is O (n), since if we choose c=3, then we notice that cn > 2n+3. As we have already illustrious earlier, big-O notation only provides a upper bound to the function, it is also O(nlog(n)) & O(n2), since n2 > nlog(n) > 2n+3. However, we will select the smallest function which describes the order of the function and it is O (n).

Through looking at the definition of Omega notation & Theta notation, it is also apparent that it is of Θ(n), and thus ?(n) too. Because if we select c=1, then we see that cn < 2n+3, therefore ?(n) . Since 2n+3 = O(n), & 2n+3 = ?(n), this  implies that 2n+3 = Θ(n) , too.

Again it is reiterated here that smaller order terms and constants may be avoided while describing asymptotic notation. For instance, if f(n) = 4n+6 rather than f(n) = 2n +3 in terms of big-O, ? and Θ, It does not modify the order of the function. The function f(n) = 4n+6 = O(n) (through choosing c appropriately as 5); 4n+6 = ?(n) (through choosing c = 1), and thus 4n+6 = Θ(n). The spirit of this analysis is that in these asymptotic notation, we may count a statement as one, and should not worry regarding their relative execution time that may based on several hardware and other implementation factors, as long as this is of the order of 1, that means O(1).


Related Discussions:- Calculates partial sum of an integer

What are the specific needs for realism, Normal 0 false false...

Normal 0 false false false EN-IN X-NONE X-NONE MicrosoftInternetExplorer4

Postorder traversal of a binary tree, Postorder traversal of a binary tree ...

Postorder traversal of a binary tree struct NODE { struct NODE *left; int value;     /* can take any data type */ struct NODE *right; }; postorder(struct NODE

What do you understand by tree traversal, What do you understand by tree tr...

What do you understand by tree traversal? The algorithm walks by the tree data structure and performs some computation at everynode in the tree. This process of walking by the

What are expression trees, What are expression trees?  The leaves of an...

What are expression trees?  The leaves of an expression tree are operands, like as constants or variable names, and the other nodes have operators. This certain tree happens to

Define big omega notation, Define Big Omega notation Big Omega notatio...

Define Big Omega notation Big Omega notation (?) : The lower bound for the function 'f' is given by the big omega notation (?). Considering 'g' to be a function from the non-n

Which of the sorting algorithm is stable, Which of the sorting algorithm is...

Which of the sorting algorithm is stable   Heap sorting is stable.

Merging, merging 4 sorted files containing 50 10 25 and 15 records will tak...

merging 4 sorted files containing 50 10 25 and 15 records will take time

Limitation of binary search, Limitation of Binary Search: - (i)  The co...

Limitation of Binary Search: - (i)  The complexity of Binary search is O (log2 n). The complexity is similar irrespective of the position of the element, even if it is not pres

Elaborate the symbols of abstract data type, Elaborate the symbols of abstr...

Elaborate the symbols of abstract data type length(a)-returns the number of characters in symbol a. capitalize(a)-returns the symbol generated from a by making its first cha

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd