Calculate values of the derivative, Mathematics

Assignment Help:

First, see that the right hand side of equation (2) is a polynomial and thus continuous. This implies that this can only change sign if this firstly goes by zero. Therefore, if the derivative will change signs it will do thus at v = 50 but no guarantees that it will and the only place that it may change sign is v = 50. This implies that for v > 50 the slope of the tangent lines to the velocity will have similar sign. Similarly, for v < 50 the slopes will also have similar sign.  The slopes in these ranges may have and/or probably will have various values, although we do know what their signs should be.

Let's start through looking at v < 50. We saw previous that if v = 30 the slope of the tangent line will be 3.92 or positive. Thus, for all values of v < 50 we will have positive slopes for the tangent lines. Also, by equation (2) we can notice that as v approaches 50, all the time staying less than 50, the slopes of the tangent lines will approach zero and thus flatten out. If we move v away from 50, staying less than 50, the slopes of the tangent lines will turn into steeper. If you want to get a concept of just how steep the tangent lines become you can all the time pick exact values of v and calculate values of the derivative. For illustration, we know as at v = 30 the derivative is 3.92 and thus arrows at this point must have a slope of around 4. By using this information we can here add in several arrows for the region below v = 50 as demonstrated in the graph below.

1384_Calculate values of the derivative.png

Here, let's look at v > 50. The first thing to do is to determine if the slopes are negative or positive. We will do this similar way that we did in the last bit, that is pick a value of v, plug it in (2) and notice if the derivative is negative or positive. See that you must NEVER suppose that the derivative will change signs where the derivative is zero. This is easy adequate to check so you must always do so.


Related Discussions:- Calculate values of the derivative

Find the value of ((a+b)/(a-b)) , If arg (a/b) = pi/2, then find the value ...

If arg (a/b) = pi/2, then find the value of ((a+b)/(a-b)) where a,b are complex numbers. Ans) Arg (a/b) =Pi/2 Tan-1   (a/b)=   Pi/2 A/B = tanP/2 ,therefore a/b=infinity.

Formulas, all formulas of plane figures

all formulas of plane figures

Net Present Value, A business has the opportunity to expand by purchasing ...

A business has the opportunity to expand by purchasing a machine at a cost of £80,000. The machine has an estimated life of 5 years and is projected to generate a cashflow of £20,0

Index numbers, advantages and disadvantages of index numbers

advantages and disadvantages of index numbers

Basic differential equation, Two 1000 liter tanks are containing salt water...

Two 1000 liter tanks are containing salt water. Tank 1 has 800 liters of water initially having 20 grams of salt dissolved in this and tank 2 has 1000 liters of water and initially

Real exponents, It is a fairly short section.  It's real purpose is to ackn...

It is a fairly short section.  It's real purpose is to acknowledge that the exponent properties work for any exponent.  We've already used them on integer and rational exponents al

What is geometry formula to estimate distance, Danielle requires knowing th...

Danielle requires knowing the distance around a basketball court. What geometry formula will she use? The perimeter of a rectangle is two times the length plus two times the wi

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd