Calculate values of the derivative, Mathematics

Assignment Help:

First, see that the right hand side of equation (2) is a polynomial and thus continuous. This implies that this can only change sign if this firstly goes by zero. Therefore, if the derivative will change signs it will do thus at v = 50 but no guarantees that it will and the only place that it may change sign is v = 50. This implies that for v > 50 the slope of the tangent lines to the velocity will have similar sign. Similarly, for v < 50 the slopes will also have similar sign.  The slopes in these ranges may have and/or probably will have various values, although we do know what their signs should be.

Let's start through looking at v < 50. We saw previous that if v = 30 the slope of the tangent line will be 3.92 or positive. Thus, for all values of v < 50 we will have positive slopes for the tangent lines. Also, by equation (2) we can notice that as v approaches 50, all the time staying less than 50, the slopes of the tangent lines will approach zero and thus flatten out. If we move v away from 50, staying less than 50, the slopes of the tangent lines will turn into steeper. If you want to get a concept of just how steep the tangent lines become you can all the time pick exact values of v and calculate values of the derivative. For illustration, we know as at v = 30 the derivative is 3.92 and thus arrows at this point must have a slope of around 4. By using this information we can here add in several arrows for the region below v = 50 as demonstrated in the graph below.

1384_Calculate values of the derivative.png

Here, let's look at v > 50. The first thing to do is to determine if the slopes are negative or positive. We will do this similar way that we did in the last bit, that is pick a value of v, plug it in (2) and notice if the derivative is negative or positive. See that you must NEVER suppose that the derivative will change signs where the derivative is zero. This is easy adequate to check so you must always do so.


Related Discussions:- Calculate values of the derivative

Exponents., the (cube square root of 2)^1/2)^3

the (cube square root of 2)^1/2)^3

Geometry, the figure is a rectangle with angle y=60. Find angle x

the figure is a rectangle with angle y=60. Find angle x

How to left shifts and right shifts a graph, Q. How to Left shifts and righ...

Q. How to Left shifts and right shifts a graph? Ans. When you're translating (shifting) a graph, it's easy to get subtracting and adding mixed up. It seems counter-intuiti

Evaluate infinity limit into the polynomial , Example   Evaluate following...

Example   Evaluate following limits. Solution Here our first thought is probably to just "plug" infinity into the polynomial & "evaluate" every term to finds out the

Some simple equation, divide 50 into two parts such that if 6 is subtracted...

divide 50 into two parts such that if 6 is subtracted from one part and 12 is added to the second part,we get the same number?

MENSURATION, HOW TO FIND THE HEIGHT OF A CYLINDER I NEED IT FOR ASSIGNMENT ...

HOW TO FIND THE HEIGHT OF A CYLINDER I NEED IT FOR ASSIGNMENT TO BE SUBMITTED BY 8;00 AM

#titleBUsiness calculus.., If $2,000 is invested in a savings account offer...

If $2,000 is invested in a savings account offering interest at a rate of 3.5% per year, compounded continuously, how fast is the balance growing after 8 years? (Round your answer

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd