Calculate the change in volume, Civil Engineering

Assignment Help:

Calculate the change in volume:

If the bar is 1 m long with rectangular cross section of 300 mm deep and 400 mm wide, compute the change in volume of the solid because of a longitudinal compressive force of 720 kN now if the elastic constants E and υ for the material are called as 120 kN/mm2 and 0.2 respectively.

Solution

Area of cross section of the member = 300 × 400 = 120000 mm²

 Longitudinal strain ε = P/AE = - 720 × 1000/120000 × 120 × 103 = - 0.00005

(Note that all the values have to be converted to consistent units; here, it is N for forces and mm for length.)

∴          Total change in length δ = 1000 × (- 0.00005) = - 0.05 mm.

Lateral strain εl = -υε = - 0.2 × (- 0.00005) = 0.00001

Change in depth = 0.00001 × 300 = 0.003 mm

Change  in width = 0.00001 × 400 = 0.004 mm

∴          Change in volume of the solid,

= (1000 - 0.05) (300 + 0.003) (400 + 0.004) - (1000 × 400 × 300)

= 999.95 × 300.003 × 400.004 - (1000 × 400 × 300)

= - 3600.108 mm3

Let us consider an alternate approximate method also.

Change in volume, dV = (V + dV) - V

= (l + Δl) (b + Δb) (d + Δd) - l . b . d

where Δl, Δb, and Δd are changes in length, breadth and depth of the solid.

i.e.       dV = l (1 + ε1) × b (1 + ε2) × d (1 + ε3) - l . b . d

where ε1, ε2 and ε3 are the strains in the three mutually perpendicular directions.

∴          dV = l bd × (1 + ε1) (1 + ε2) (1 + ε3) - l bd

= l bd × (1 + ε1 + ε2 + ε3 + ε1 ε2 + ε2 ε3 + ε3 ε1 + ε1 ε2 ε3) - l bd

= l bd × (ε1 + ε2 + ε3 + ε1 ε2 + ε2 ε3 + ε3 ε1 + ε1 ε2 ε3)

Neglecting the second order products,

dV = V × (ε1 + ε2 + ε3)

Now let us calculate the change in volume of the given solid using Eq.

Change in volume, dV = V × (ε1 + ε2 + ε3)

= 1000 × 300 × 400 (- 0.00005 + 0.00001 + 0.00001)

= - 3600 mm3

By there is a small error, the approximation is quite satisfactory (As an exercise you might calculate the percentage error in the value). If you are extremely particular about accuracy, you use the subsequent formulation:

dV = V × (ε1 + ε2 + ε3 + ε1 ε2 + ε2 ε3 + ε3 ε1 + ε1 ε2 ε3)


Related Discussions:- Calculate the change in volume

Aslar masonry, different types of ashlar masonry

different types of ashlar masonry

Design of masonry, Describe the different types of Ant proof courses

Describe the different types of Ant proof courses

Offset, what is the meaning of offset

what is the meaning of offset

SURVEYING, TYPES OF OBSTACLES IN CHAIN SURVEYING

TYPES OF OBSTACLES IN CHAIN SURVEYING

Show constituents of bricks, Q. Show Constituents of bricks? The brick ...

Q. Show Constituents of bricks? The brick is manufactured out of special. Type of brick earth consisting of clay and sand the proportion of clay and earth should be such that w

Design approach for the spacing of min-piles, Design approach for the spaci...

Design approach for the spacing of min-piles For close spacing of min-piles, it would provide substantial cost savings with reduction of pile cap size. Though close spacing of

Minimum and maximum area of reinforcement, Q. Minimum and maximum area of r...

Q. Minimum and maximum area of reinforcement? Minimum area of reinforcement vs. maximum area of reinforcement Beams can be designed to be larger than required for strength

Variations of tendon stresses in pre tensioned concrete, Variations of tend...

Variations of tendon stresses in pre or post-tensioned concrete Variations of tendon stresses in pre or post-tensioned concrete members, along the length of tendons, may be of

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd