Calculate the change in volume, Civil Engineering

Assignment Help:

Calculate the change in volume:

If the bar is 1 m long with rectangular cross section of 300 mm deep and 400 mm wide, compute the change in volume of the solid because of a longitudinal compressive force of 720 kN now if the elastic constants E and υ for the material are called as 120 kN/mm2 and 0.2 respectively.

Solution

Area of cross section of the member = 300 × 400 = 120000 mm²

 Longitudinal strain ε = P/AE = - 720 × 1000/120000 × 120 × 103 = - 0.00005

(Note that all the values have to be converted to consistent units; here, it is N for forces and mm for length.)

∴          Total change in length δ = 1000 × (- 0.00005) = - 0.05 mm.

Lateral strain εl = -υε = - 0.2 × (- 0.00005) = 0.00001

Change in depth = 0.00001 × 300 = 0.003 mm

Change  in width = 0.00001 × 400 = 0.004 mm

∴          Change in volume of the solid,

= (1000 - 0.05) (300 + 0.003) (400 + 0.004) - (1000 × 400 × 300)

= 999.95 × 300.003 × 400.004 - (1000 × 400 × 300)

= - 3600.108 mm3

Let us consider an alternate approximate method also.

Change in volume, dV = (V + dV) - V

= (l + Δl) (b + Δb) (d + Δd) - l . b . d

where Δl, Δb, and Δd are changes in length, breadth and depth of the solid.

i.e.       dV = l (1 + ε1) × b (1 + ε2) × d (1 + ε3) - l . b . d

where ε1, ε2 and ε3 are the strains in the three mutually perpendicular directions.

∴          dV = l bd × (1 + ε1) (1 + ε2) (1 + ε3) - l bd

= l bd × (1 + ε1 + ε2 + ε3 + ε1 ε2 + ε2 ε3 + ε3 ε1 + ε1 ε2 ε3) - l bd

= l bd × (ε1 + ε2 + ε3 + ε1 ε2 + ε2 ε3 + ε3 ε1 + ε1 ε2 ε3)

Neglecting the second order products,

dV = V × (ε1 + ε2 + ε3)

Now let us calculate the change in volume of the given solid using Eq.

Change in volume, dV = V × (ε1 + ε2 + ε3)

= 1000 × 300 × 400 (- 0.00005 + 0.00001 + 0.00001)

= - 3600 mm3

By there is a small error, the approximation is quite satisfactory (As an exercise you might calculate the percentage error in the value). If you are extremely particular about accuracy, you use the subsequent formulation:

dV = V × (ε1 + ε2 + ε3 + ε1 ε2 + ε2 ε3 + ε3 ε1 + ε1 ε2 ε3)


Related Discussions:- Calculate the change in volume

Shear strength of concrete., why do we use effective depth ''d'' in calcula...

why do we use effective depth ''d'' in calculating the shear capacity of uncracked Concrete beam. If it is uncracked, why cant we use the full depth ''D''.

Storm water, what are the roles of civil engineers in storm water managemen...

what are the roles of civil engineers in storm water management

Calculate the most probable value, The most probable value of the following...

The most probable value of the following observations on the same angle (35º 17' 42" ; 35º 17' 38" ; 35º 18' 00" ; 35º 17'; 22"; 35º 17' 42");  is most nearly:   35º 17' 40.8

Foundation, What are different type of foundation and their suitablity

What are different type of foundation and their suitablity

Wet mix, how to design wet mix

how to design wet mix

Define underwater inspection methods - inspection of bridge, Define Underwa...

Define Underwater inspection methods - inspection of bridge? Method for underwater inspection of a bridge depends on type and extent of damage expected, inspection intensity le

Construction water, what should we do if alkalinity in water is greater tha...

what should we do if alkalinity in water is greater than 25

Foundation depth and arrangement, Foundation Depth and Arrangement: Th...

Foundation Depth and Arrangement: There are two types of foundations, viz, (a) Shallow foundations, also known as open foundations, and (b) Deep foundations. Slab cul

Behaviour of elastomeric bearings, Q. Behaviour of elastomeric bearings ? ...

Q. Behaviour of elastomeric bearings ? In order to carry out successful design and installation of elastomeric bearings, it is necessary to understand the behaviour of elastome

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd