Calculate the change in volume, Civil Engineering

Assignment Help:

Calculate the change in volume:

If the bar is 1 m long with rectangular cross section of 300 mm deep and 400 mm wide, compute the change in volume of the solid because of a longitudinal compressive force of 720 kN now if the elastic constants E and υ for the material are called as 120 kN/mm2 and 0.2 respectively.

Solution

Area of cross section of the member = 300 × 400 = 120000 mm²

 Longitudinal strain ε = P/AE = - 720 × 1000/120000 × 120 × 103 = - 0.00005

(Note that all the values have to be converted to consistent units; here, it is N for forces and mm for length.)

∴          Total change in length δ = 1000 × (- 0.00005) = - 0.05 mm.

Lateral strain εl = -υε = - 0.2 × (- 0.00005) = 0.00001

Change in depth = 0.00001 × 300 = 0.003 mm

Change  in width = 0.00001 × 400 = 0.004 mm

∴          Change in volume of the solid,

= (1000 - 0.05) (300 + 0.003) (400 + 0.004) - (1000 × 400 × 300)

= 999.95 × 300.003 × 400.004 - (1000 × 400 × 300)

= - 3600.108 mm3

Let us consider an alternate approximate method also.

Change in volume, dV = (V + dV) - V

= (l + Δl) (b + Δb) (d + Δd) - l . b . d

where Δl, Δb, and Δd are changes in length, breadth and depth of the solid.

i.e.       dV = l (1 + ε1) × b (1 + ε2) × d (1 + ε3) - l . b . d

where ε1, ε2 and ε3 are the strains in the three mutually perpendicular directions.

∴          dV = l bd × (1 + ε1) (1 + ε2) (1 + ε3) - l bd

= l bd × (1 + ε1 + ε2 + ε3 + ε1 ε2 + ε2 ε3 + ε3 ε1 + ε1 ε2 ε3) - l bd

= l bd × (ε1 + ε2 + ε3 + ε1 ε2 + ε2 ε3 + ε3 ε1 + ε1 ε2 ε3)

Neglecting the second order products,

dV = V × (ε1 + ε2 + ε3)

Now let us calculate the change in volume of the given solid using Eq.

Change in volume, dV = V × (ε1 + ε2 + ε3)

= 1000 × 300 × 400 (- 0.00005 + 0.00001 + 0.00001)

= - 3600 mm3

By there is a small error, the approximation is quite satisfactory (As an exercise you might calculate the percentage error in the value). If you are extremely particular about accuracy, you use the subsequent formulation:

dV = V × (ε1 + ε2 + ε3 + ε1 ε2 + ε2 ε3 + ε3 ε1 + ε1 ε2 ε3)


Related Discussions:- Calculate the change in volume

Vibrocoring in marine ground investigation, Vibrocoring in marine ground in...

Vibrocoring in marine ground investigation If only shallow marine ground geotechnical information is essential for design purpose, vibrocoring is certainly a good choice for s

Angular messurement using total stations, write a short note on angular mes...

write a short note on angular messurement using stations?

#soil survey., Explian obstacles in chaining but not ranging.

Explian obstacles in chaining but not ranging.

Define the types of shock transmission unit, Define the Types of shock tran...

Define the Types of shock transmission unit? Presently two types of STUs are available in the overseas market: (a) Silicon putty based from UK and USA. (b) Oil based from

Defaults for precast concrete pipes made by spinning, Q. Defaults for preca...

Q. Defaults for precast concrete pipes made by spinning? Small diameter precast concrete pipes are generally manufactured by spinning method. The spinning method fundamentally

Water bound macadam road, What is the binding material of the water bound m...

What is the binding material of the water bound macadam road

Explain the signalized intersections - transportation, Explain the Signaliz...

Explain the Signalized Intersections Cycle length - the time required for one complete sequence of all signal indications Phase - the right-of-way (green), change (yellow),

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd