Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Q. The reason bubble sort algorithm is inefficient is that it continues execution even after an array is sorted by performing unnecessary comparisons. Therefore, the number of comparisons in the best and worst cases both are same. Modify the algorithm such that it will not make the next pass when the array is already sorted.
Ans:
The bubble sort continues the execution even after an array is sorted. To avoid unnecessary comparisons we add a Boolean variable say switched and initialize it by True in the starting. Along with the "for" loop, we hear add the condition (switched=true) and make it false inside the outer for loop. If a swapping is done then the value of switched is made true. Thus if no swapping has been done in the first pass, then no more comparisons will be done further and the program shall exit. The algorithm after modifying it in the above stated manner will be as follows:- void bubble(int x[],int n) { int j,pass,hold; bool switched=true; for(pass=0;pass { switched=false; for(j=0;j { switched=true; hold=x[j]; x[j]=x[j+1]; x[j+1]=hold; } } }
The bubble sort continues the execution even after an array is sorted. To avoid unnecessary comparisons we add a Boolean variable say switched and initialize it by True in the starting. Along with the "for" loop, we hear add the condition (switched=true) and make it false inside the outer for loop. If a swapping is done then the value of switched is made true. Thus if no swapping has been done in the first pass, then no more comparisons will be done further and the program shall exit.
The algorithm after modifying it in the above stated manner will be as follows:-
void bubble(int x[],int n)
{
int j,pass,hold;
bool switched=true;
for(pass=0;pass { switched=false; for(j=0;j { switched=true; hold=x[j]; x[j]=x[j+1]; x[j+1]=hold; } } }
switched=false;
for(j=0;j { switched=true; hold=x[j]; x[j]=x[j+1]; x[j+1]=hold; } } }
switched=true; hold=x[j]; x[j]=x[j+1];
x[j+1]=hold;
}
Methods of Collision Resolution 1) Collision Resolution by separate chaining 2) Collision Resolution by open addressing
Threaded Binary Tree:- By changing the NULL lines in a binary tree to special links known as threads, it is possible to perform traversal, insertion and deletion without using
State the example of pre- and post-conditions Suppose that function f(x) should have a non-zero argument and return a positive value. We can document these pre- and post-condit
Illumination of wire frame The colour or shade that a surface appears to the human eye depends primarily on three factors : Colour and strength of incoming illumination
omega notation definition?
Q. Using the following given inorder and preorder traversal reconstruct a binary tree Inorder sequence is D, G, B, H, E, A, F, I, C
Diffuse Illumination Diffuse illumination means light that comes from all directions not from one particular source. Think about the light of a grey cloudy day as compared to
how to do a merge sorting
Channel access In first generation systems, every cell supports a number of channels. At any given time a channel is allocated to only one user. Second generation systems also
The disadvantages or limitations of the last in first out costing method are: The election of last in first out for income tax purposes is binding for all subsequent yea
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd