Briefly explain about laplace transform, Electrical Engineering

Assignment Help:

Q. Briefly explain about Laplace transform?

Many commonly encountered excitations can be represented by exponential functions. The differential equations describing the networks are transformed into algebraic equations with the use of exponentials. The operational calculus was developed by Oliver Heaviside (1850-1925) based on a collection of intuitive rules; the transformation is, however, named after Pierre Simon Laplace (1749-1827) because a complete mathematical development of Heaviside's methods has been found in the 1780 writings of Laplace. The Laplace transformation provides a systematic algebraic approach for determining the total network response, including the effect of initial conditions. The differential equations in the time domain are transformed into algebraic equations in the frequency domain.

Frequency-domain quantities are manipulated to obtain the frequency-domain equivalent of the desired result. Then, by taking the inverse transform, the desired result in the time domain is obtained.

The single-sided Laplace transform of a function f (t) is defined by

1252_Briefly explain about Laplace transform.png

where f(t) = 0 for t< 0, and s is a complex-frequency variable given by s = σ + jω. The frequency-domain function F(s) is the Laplace transform of the time-domain function f (t).When the integral of Equation is less than infinity and converges, f (t) is Laplace transformable.

Note that for σ> 0,e-st decreases rapidly, making the integral converge. The uniqueness of the Laplace transform leads to the concept of the transform pairs,

L[f(t)] = F(s) ⇔ L-1[F(s)] = f(t)

which states that the inverse Laplace transform of F(s)is f (t). It should be noted that the Laplace transform is a linear operation such that

L[Af1(t) + Bf2(t)] = AF1(s) + BF2(s)

in which A and B are independent of s and t, and F1(s) and F2(s) are the Laplace transforms of f1(t) and f2(t), respectively.


Related Discussions:- Briefly explain about laplace transform

Explain about adaptive control system, Q. Explain about Adaptive Control Sy...

Q. Explain about Adaptive Control System? Another type of control system that makes use of the computer is known as adaptive control, which is functionally represented in Figur

Define the term causality lti system, Define the term Causality LTI System ...

Define the term Causality LTI System Any practical LTI system operating in real time must be "causal" which means that its impulse response {h[n]} must satisfy h[n] = 0 for n

What are the various types of amplifiers, Q. What are the various types of ...

Q. What are the various types of amplifiers? Amplifiers can be classified as follows: (a) Based on the transistor configuration 1. Common emitter amplifier 2. Common c

Define super scalar architecture, Define super scalar architecture. Su...

Define super scalar architecture. Super scalar architecture: The Pentium microprocessor is organized along with three execution units. Individual executes floating-point inst

Strain gauge bridge circuit, Explain kinds of strain gauge bridge circuits ...

Explain kinds of strain gauge bridge circuits and resistance strain gauges.

Frequency stability of quartz crystals, Q. Frequency stability of quartz cr...

Q. Frequency stability of quartz crystals ? The amount of frequency deviation from the ambient temperature frequency over the operating temperature range. This deviation is ass

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd