Breadth-first search, Data Structure & Algorithms

Assignment Help:

Breadth-first search starts at a given vertex h, which is at level 0. In the first stage, we go to
all the vertices that are at the distance of one edge away. When we go there, we marked
as "visited," the vertices adjacent to the start vertex s - these vertices are placed into level 1.
In the second stage, we go to all the new vertices we can reach at the distance of two edges
away from the source vertex h. These new vertices, which are adjacent to level 1 vertex and not
previously assigned to a level, are placed into level 2. The BFS traversal ends when each vertex
has been finished.

The BFS(G, a) algorithm creates a breadth-first search tree with the source vertex, s, as its root.
The predecessor or parent of any other vertex in the tree is the vertex from which it was first
developed. For every vertex, v, the parent of v is marked in the variable π[v]. Another variable,
d[v], calculated by BFS has the number of tree edges on the way from s tov. The breadth-first
search needs a FIFO queue, Q, to store red vertices.

Algorithm: Breadth-First Search Traversal

BFS(V, E, a)

1.
2.             do color[u] ← BLACK
3.                 d[u] ← infinity
4.                 π[u] ← NIL
5.         color[s] ← RED                 ? Source vertex find
6.         d[a] ← 0                               ? Start
7.         π[a] ← NIL                           ? Stat
8.         Q ← {}                                ? Empty queue Q
9.         ENQUEUE(Q, a)
10        while Q is non-empty
11.             do u ← DEQUEUE(Q)                   ? That is, u = head[Q]
12.
13.                         do if color[v] ← BLACK    ? if color is black you've never seen it before
14.                                 then  color[v] ← RED
15.                                          d[v] ← d[u] + 1
16.                                          π[v] ← u
17.                                          ENQUEUE(Q, v)
18.                 DEQUEUE(Q)
19.         color[u] ← BLACK

 

 


Related Discussions:- Breadth-first search

A full binary tree with n leaves, A full binary tree with n leaves have:- ...

A full binary tree with n leaves have:- 2n -1 nodes.

Bayesian statistics question, Suppose that there is a Beta(2,2) prior distr...

Suppose that there is a Beta(2,2) prior distribution on the probability theta that a coin will yield a "head" when spun in a specified manner. The coin is independently spun 10 tim

Multilist file organisation, what is multilist length file organisation? ex...

what is multilist length file organisation? explain with an example

Kruskal algorithm for minimum spanning, Implementations of Kruskal's algori...

Implementations of Kruskal's algorithm for Minimum Spanning Tree. You are implementing Kruskal's algorithm here. Please implement the array-based Union-Find data structure.

Exact analysis of insertion sort, Exact analysis of insertion sort: Let...

Exact analysis of insertion sort: Let us assume the following pseudocode to analyse the exact runtime complexity of insertion sort. T j   is the time taken to execute the s

Calculation of time complexity, Example: Assume the following of code: ...

Example: Assume the following of code: x = 4y + 3 z = z + 1 p = 1 As we have been seen, x, y, z and p are all scalar variables & the running time is constant irrespective

Random searching, write aprogram for random -search to implement if a[i]=x;...

write aprogram for random -search to implement if a[i]=x;then terminate other wise continue the search by picking new randon inex into a

How conquer technique can be applied to binary trees, How divide and conque...

How divide and conquer technique can be applied to binary trees?  As the binary tree definition itself separates a binary tree into two smaller structures of the similar type,

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd