Breadth-first search, Data Structure & Algorithms

Assignment Help:

Breadth-first search starts at a given vertex h, which is at level 0. In the first stage, we go to
all the vertices that are at the distance of one edge away. When we go there, we marked
as "visited," the vertices adjacent to the start vertex s - these vertices are placed into level 1.
In the second stage, we go to all the new vertices we can reach at the distance of two edges
away from the source vertex h. These new vertices, which are adjacent to level 1 vertex and not
previously assigned to a level, are placed into level 2. The BFS traversal ends when each vertex
has been finished.

The BFS(G, a) algorithm creates a breadth-first search tree with the source vertex, s, as its root.
The predecessor or parent of any other vertex in the tree is the vertex from which it was first
developed. For every vertex, v, the parent of v is marked in the variable π[v]. Another variable,
d[v], calculated by BFS has the number of tree edges on the way from s tov. The breadth-first
search needs a FIFO queue, Q, to store red vertices.

Algorithm: Breadth-First Search Traversal

BFS(V, E, a)

1.
2.             do color[u] ← BLACK
3.                 d[u] ← infinity
4.                 π[u] ← NIL
5.         color[s] ← RED                 ? Source vertex find
6.         d[a] ← 0                               ? Start
7.         π[a] ← NIL                           ? Stat
8.         Q ← {}                                ? Empty queue Q
9.         ENQUEUE(Q, a)
10        while Q is non-empty
11.             do u ← DEQUEUE(Q)                   ? That is, u = head[Q]
12.
13.                         do if color[v] ← BLACK    ? if color is black you've never seen it before
14.                                 then  color[v] ← RED
15.                                          d[v] ← d[u] + 1
16.                                          π[v] ← u
17.                                          ENQUEUE(Q, v)
18.                 DEQUEUE(Q)
19.         color[u] ← BLACK

 

 


Related Discussions:- Breadth-first search

Interest rate, explain the determination of interest rate in the classical ...

explain the determination of interest rate in the classical system.

Explain circular queues, Circular Queues:- A more efficient queue repre...

Circular Queues:- A more efficient queue representation is get by regarding the array Q(1:n) as circular. It becomes more convenient to declare the array as Q(O: n-1), when  re

Frequency counts for all statements, Evaluate the frequency counts for all ...

Evaluate the frequency counts for all statements in the following given program segment. for (i=1; i ≤ n; i ++) for (j = 1; j ≤ i; j++) for (k =1; k ≤ j; k++) y ++;

Determine the area subdivision method, Area Subdivision Method In this ...

Area Subdivision Method In this method, the viewport is examined for clear decisions on the polygons situated in it, in regard to their overlap and visibility to the viewer. Fo

Illustrate the intervals in mathematics, Illustrate the intervals in mathem...

Illustrate the intervals in mathematics Carrier set of a Range of T is the set of all sets of values v ∈ T such that for some start value s ∈ T and end value e ∈ T, either s ≤

Programme in c to create a single linked list, Q. Write  down a   p...

Q. Write  down a   programme  in  C  to  create  a  single  linked  list also  write the functions to do the following operations (i)  To insert a new node at the end (ii

Explain the different types of traversal on binary tree, Question 1 What i...

Question 1 What is a data structure? Discuss briefly on types of data structures Question 2 Explain the insertion and deletion operation of linked list in detail Qu

Depth first search and breadth first search, Q. Illustrate the result of ru...

Q. Illustrate the result of running BFS and DFS on the directed graph given below using vertex 3 as source.  Show the status of the data structure used at each and every stage.

The number of different directed trees with 3 nodes, The number of differen...

The number of different directed trees with 3 nodes are ?? The number of disimilar directed trees with three nodes are 3

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd