Boolean operations - class of recognizable languages, Theory of Computation

Assignment Help:

Theorem The class of recognizable languages is closed under Boolean operations.

The construction of the proof of Lemma 3 gives us a DFA that keeps track of whether or not a given string is in either or both of any pair of recognizable languages. We can modify the construction for other Boolean operations simply by selecting the appropriate set of accepting states:

• Union: Let F′

= {(q, p) | q ∈ F1 or p ∈ F2}. Then L(A′ ) = L1 ∪ L2.

• Relative complement: Let F′ = F1 × (Q2 - F2). Then L(A′ ) = L1 -L2.

• Complement: Let L1 = Σ* and use the construction for relative complement.


Related Discussions:- Boolean operations - class of recognizable languages

Moore machine, Construct a Moore machine to convert a binary string of radi...

Construct a Moore machine to convert a binary string of radix 4.

Defining strictly local automata, One of the first issues to resolve, when ...

One of the first issues to resolve, when exploring any mechanism for defining languages is the question of how to go about constructing instances of the mechanism which define part

Computation of an automaton, The computation of an SL 2 automaton A = ( Σ,...

The computation of an SL 2 automaton A = ( Σ, T) on a string w is the maximal sequence of IDs in which each sequential pair of IDs is related by |- A and which starts with the in

Construct a regular expression, Given any NFA A, we will construct a regula...

Given any NFA A, we will construct a regular expression denoting L(A) by means of an expression graph, a generalization of NFA transition graphs in which the edges are labeled with

Abstract model for an algorithm solving a problem, These assumptions hold f...

These assumptions hold for addition, for instance. Every instance of addition has a unique solution. Each instance is a pair of numbers and the possible solutions include any third

Finite automata, design an automata for strings having exactly four 1''s

design an automata for strings having exactly four 1''s

Create a general algorithm from a checking algorithm, Claim Under the assum...

Claim Under the assumptions above, if there is an algorithm for checking a problem then there is an algorithm for solving the problem. Before going on, you should think a bit about

Applying the pumping lemma, Applying the pumping lemma is not fundamentally...

Applying the pumping lemma is not fundamentally di?erent than applying (general) su?x substitution closure or the non-counting property. The pumping lemma is a little more complica

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd