Boolean operations - class of recognizable languages, Theory of Computation

Assignment Help:

Theorem The class of recognizable languages is closed under Boolean operations.

The construction of the proof of Lemma 3 gives us a DFA that keeps track of whether or not a given string is in either or both of any pair of recognizable languages. We can modify the construction for other Boolean operations simply by selecting the appropriate set of accepting states:

• Union: Let F′

= {(q, p) | q ∈ F1 or p ∈ F2}. Then L(A′ ) = L1 ∪ L2.

• Relative complement: Let F′ = F1 × (Q2 - F2). Then L(A′ ) = L1 -L2.

• Complement: Let L1 = Σ* and use the construction for relative complement.


Related Discussions:- Boolean operations - class of recognizable languages

Powerset construction, As de?ned the powerset construction builds a DFA wit...

As de?ned the powerset construction builds a DFA with many states that can never be reached from Q′ 0 . Since they cannot be reached from Q′ 0 there is no path from Q′ 0 to a sta

Strictly 2-local languages, The fundamental idea of strictly local language...

The fundamental idea of strictly local languages is that they are speci?ed solely in terms of the blocks of consecutive symbols that occur in a word. We'll start by considering lan

Kleene Closure, 1. Does above all''s properties can be used to prove a lang...

1. Does above all''s properties can be used to prove a language regular? 2..which of the properties can be used to prove a language regular and which of these not? 3..Identify one

Mapping reducibility, Can you say that B is decidable? If you somehow know...

Can you say that B is decidable? If you somehow know that A is decidable, what can you say about B?

Discrete math, Find the Regular Grammar for the following Regular Expressio...

Find the Regular Grammar for the following Regular Expression: a(a+b)*(ab*+ba*)b.

Dfa to re, c program to convert dfa to re

c program to convert dfa to re

Construct a recognizer, Let L1 and L2 be CGF. We show that L1 ∩ L2 is CFG t...

Let L1 and L2 be CGF. We show that L1 ∩ L2 is CFG too. Let M1 be a decider for L1 and M2 be a decider for L2 . Consider a 2-tape TM M: "On input x: 1. copy x on the sec

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd