Boolean operations - class of recognizable languages, Theory of Computation

Assignment Help:

Theorem The class of recognizable languages is closed under Boolean operations.

The construction of the proof of Lemma 3 gives us a DFA that keeps track of whether or not a given string is in either or both of any pair of recognizable languages. We can modify the construction for other Boolean operations simply by selecting the appropriate set of accepting states:

• Union: Let F′

= {(q, p) | q ∈ F1 or p ∈ F2}. Then L(A′ ) = L1 ∪ L2.

• Relative complement: Let F′ = F1 × (Q2 - F2). Then L(A′ ) = L1 -L2.

• Complement: Let L1 = Σ* and use the construction for relative complement.


Related Discussions:- Boolean operations - class of recognizable languages

Overview of dfa, Explain Theory of Computation ,Overview of DFA,NFA, CFG, P...

Explain Theory of Computation ,Overview of DFA,NFA, CFG, PDA, Turing Machine, Regular Language, Context Free Language, Pumping Lemma, Context Sensitive Language, Chomsky Normal For

Describe the algorithm and draw the transition diagram, 1. Simulate a TM wi...

1. Simulate a TM with infinite tape on both ends using a two-track TM with finite storage 2. Prove the following language is non-Turing recognizable using the diagnolization

Myhill-nerode, Theorem (Myhill-Nerode) A language L ⊆ Σ is recognizable iff...

Theorem (Myhill-Nerode) A language L ⊆ Σ is recognizable iff ≡L partitions Σ* into ?nitely many Nerode equivalence classes. Proof: For the "only if" direction (that every recogn

Computer Simulation, Generate 100 random numbers with the exponential distr...

Generate 100 random numbers with the exponential distribution lambda=5.0.What is the probability that the largest of them is less than 1.0?

Context free grammar, A context free grammar G = (N, Σ, P, S)  is in binary...

A context free grammar G = (N, Σ, P, S)  is in binary form if for all productions A we have |α| ≤ 2. In addition we say that G is in Chomsky Normaml Form (CNF) if it is in bi

Qbasic, Ask question #Minimum 100 words accepte

Ask question #Minimum 100 words accepte

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd