Boolean operations - class of recognizable languages, Theory of Computation

Assignment Help:

Theorem The class of recognizable languages is closed under Boolean operations.

The construction of the proof of Lemma 3 gives us a DFA that keeps track of whether or not a given string is in either or both of any pair of recognizable languages. We can modify the construction for other Boolean operations simply by selecting the appropriate set of accepting states:

• Union: Let F′

= {(q, p) | q ∈ F1 or p ∈ F2}. Then L(A′ ) = L1 ∪ L2.

• Relative complement: Let F′ = F1 × (Q2 - F2). Then L(A′ ) = L1 -L2.

• Complement: Let L1 = Σ* and use the construction for relative complement.


Related Discussions:- Boolean operations - class of recognizable languages

Transition graph for the automaton, Lemma 1 A string w ∈ Σ* is accepted by ...

Lemma 1 A string w ∈ Σ* is accepted by an LTk automaton iff w is the concatenation of the symbols labeling the edges of a path through the LTk transition graph of A from h?, ∅i to

Xx, Ask queyystion #Minimum 100 words accepted#

Ask queyystion #Minimum 100 words accepted#

Decidability, examples of decidable problems

examples of decidable problems

Transition and path functions, When an FSA is deterministic the set of trip...

When an FSA is deterministic the set of triples encoding its edges represents a relation that is functional in its ?rst and third components: for every q and σ there is exactly one

Automaton theory, let G=(V,T,S,P) where V={a,b,A,B,S}, T={a,b},S the start ...

let G=(V,T,S,P) where V={a,b,A,B,S}, T={a,b},S the start symbol and P={S->Aba, A->BB, B->ab,AB->b} 1.show the derivation sentence for the string ababba 2. find a sentential form

Java programming, 1. An integer is said to be a “continuous factored” if it...

1. An integer is said to be a “continuous factored” if it can be expresses as a product of two or more continuous integers greater than 1. Example of continuous factored integers

Abstract model of computation, When we say "solved algorithmically" we are ...

When we say "solved algorithmically" we are not asking about a speci?c programming language, in fact one of the theorems in computability is that essentially all reasonable program

Regular languages, LTO was the closure of LT under concatenation and Boolea...

LTO was the closure of LT under concatenation and Boolean operations which turned out to be identical to SF, the closure of the ?nite languages under union, concatenation and compl

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd