Binomial distribution, Mathematics

Assignment Help:

Binomial Distribution

Consider a batch of N light bulbs. Each bulb may be defective (S) or non-defective (F). The experiment involves selecting a light bulb and checking whether it is S or F. This experiment is called a Bernoulli Experiment since it has only two outcomes Success and Failure. Suppose it is known that there are M defective light bulbs in the batch. If we represent success by 1 and failure by 0, then

P (Success) = P (X = 1)           = M/N = p (say)

P (Failure)  = P (X = 0)             = 1 - p = q (say)

X is said to be a random variable with Bernoulli distribution.

(Notice that a Bernoulli experiment can always be replicated by a (biased) coin with Head = 1, Tail = 0, P(1) = p)

Suppose the Bernoulli experiment is repeated n times under the same condition. That is, after the light bulb is tested, it is put back into the batch. This way, the probabilities p and q remain unchanged. (This type of sampling is called Sampling with Replacement.)

Let X = Number of successes in n trials.

Then, P(X = x) =   1049_binomial distribution.png px qn - x, x = 0, 1, 2, ..., n  where   1089_binomial distribution1.png

We sum up the Bernoulli Process as follows:

1. Each trial has only two possible outcomes.

In our example, the two possible outcomes are whether a bulb is defective or non-defective.

2. The probability of the outcome of any trial remains fixed over time.

In our example, the probability of the bulb being defective or non-defective remains fixed throughout.

3. The trials are statistically independent.

In our example, the outcome of the bulb being defective or non-defective does not affect the outcome of any other bulb being so.

Example

 

Find the probability of getting exactly three heads in 4 tosses of a biased coin, where

P(H) = 3/4 and P(T) = 1/4

P(X = 3)= 

2322_binomial distribution2.png (0.75)3 (0.25) = 4 x (0.75)3 x (0.25)

=

0.421875  

It can be shown for the Binomial Distribution

m = E(x)  = np

s2 = V(X) = npq


Related Discussions:- Binomial distribution

About matrix?, Explain sparse matrix and Dense matrix?

Explain sparse matrix and Dense matrix?

Derivatives, What are the ingredients of a Mathematical Model? What is a mo...

What are the ingredients of a Mathematical Model? What is a model?

Systems of differential equations, For this point we've only looked as solv...

For this point we've only looked as solving particular differential equations. Though, many "real life" situations are governed through a system of differential equations. See the

Example of spiral development of the mathematics curriculum?, E1) Can you g...

E1) Can you give some more examples of the spiral development of the mathematics curriculum? E2) A Class 3 child was asked to add 1/4 + 1/5. She wrote 2/9. Why do you feel this

Mean and standard deviation, Q. Mean and Standard Deviation? Ans. ...

Q. Mean and Standard Deviation? Ans. The normal distribution is totally described if we know the average and standard deviation. - the population mean of the distribu

Famous Numbers, Do you provide the answers to the Famous Numbers Exercise?

Do you provide the answers to the Famous Numbers Exercise?

Fermat''s little theorem, 1. How many closed necklaces of length 7 can be m...

1. How many closed necklaces of length 7 can be made with 3 colors? (notice that 7 is a prime) 2. How many closed necklaces of length 10 can be made with 3 colors (this is di erent

General rule - probability rule, GENERAL RULE A general rule is to sub...

GENERAL RULE A general rule is to subtract the probabilities with an even number of components inside the parentheses and add those with an odd number of components (one or th

Frequency polygon, how to compute the frequncy polygon of the scores?

how to compute the frequncy polygon of the scores?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd