Binary search tree, Data Structure & Algorithms

Assignment Help:

Objectives

The purpose of this project is to give you significant exposure to Binary Search Trees (BST), tree traversals, and recursive code.

Background

An arbitrary BST is seldom balanced. The left and right subtrees of a node may have different heights or contain different numbers of nodes, potentially leading to O( N ) performance for operations such as insert, find, and remove. There are several techniques for improving performance and insuring O( lg N ) performance by "balancing" the tree. Some of these will be discussed in class.

Description

In this project, you will explore balancing BST based on the weights of its subtrees. Here we define the weight of a BST to be the number of nodes in that tree. A node in a BST is weight-balanced if the weights of its left and right subtrees differ by no more than 1. A weight-balanced BST is a BST in which every node is weight-balanced. An important property of weight-balanced BST is that the value at any node, X, is a median of the values at all nodes in the subtree rooted at X.

How You're Program Works

Your program is invoked with two command line arguments. The first argument is the name of a file of integers (separated by whitespace) to read and insert into your BST. The second argument is the level to which your BSTs should be printed. Recall that the root is at level zero. For example

unix> ant run -Dargs="integers.dat 4"

Your program performs the following steps

  • Read the integers found in the file specified on the command line and insert them into an initially empty BST, let's call it T, ignoring duplicates.
  • Print the number of integers read from the file (including duplicates).
  • Print the number of nodes in T, the height and median value of T and then print the contents of T in level-order up to the level specified on the command line.
  • Weight-balance T according to the (admittedly inefficient) algorithm below.

    Weight Balance tree T

       find the median of T

       create a new BST, T', with a single node (the root) whose value is the median of T

       retrieve and insert elements of all nodes of T except the median into T'.

       replace T with T'           // T' has a weight-balanced root

       call this procedure to balance the left and right subtrees of T

Print the number of nodes in the weight-balanced tree, the height and median of the weight-balance tree and the contents of the tree in level-order up to the level specified on the command line.

Your Tasks

Design and implement a BST tree class which supports the required operations for this project. You are free to write your own BST from scratch or use some or all of the author's code as a starting point.

Project Requirements, Notes and Hints

    (R) Level-order printing

If the tree's height is less than the specified number of levels to print, then print the entire tree.

Tree nodes must be printed as ordered triples of values in the format ( x, y, z ), where x is the value found in the node's parent (print -1 for the root's parent), y is the value found in the node being printed and z is the weight of the tree rooted at that node.

Your level-order tree print must start with a label on a new line for each level, and print 4 nodes per line if there are more than 4 nodes at a given level.

The format for printing trees is shown in the sample output below.

(N) A level-order traversal requires use of a queue. Elements in the queue should contain appropriate data to print the required information.

(N) You are free to use any classes provided by the Java 6 API.

(N) The median of a set of values is the value "in the middle". If there are an even number of values, then there are two values "in the middle". In this project you should use the smaller of the two as the median.

(N) The algorithm given to weight-balance the tree is not the only possible algorithm, but we ask you to use this one so that your project output matches ours.

(H) Test your code with small files first, using non-random data then move to larger, more complex files.

(H) Some methods are better implemented as recursive functions, others as iterative functions. Choose your implementation carefully.

(H) By convention and for ease of coding, define the height of an empty tree as -1.

(H) Consider adding a new data member to each node which is the weight of the tree rooted at that node. The weight will make it easier to find the median and must be printed with each node. New nodes start with weight = 1. Nodes visited while finding the insertion point for a new node have their weight incremented if the integer being inserted is not a duplicate.

(H) Use the weight in the tree nodes described above to help find the median value. The median may be found with either a recursive or iterative algorithm.


Related Discussions:- Binary search tree

Explain binary search tree, Binary search tree. A binary search tree is...

Binary search tree. A binary search tree is a binary tree that is either empty or in which every node having a key that satisfies the following conditions: - All keys (if an

Write down the algorithm of quick sort, Write down the algorithm of quick s...

Write down the algorithm of quick sort. An algorithm for quick sort: void quicksort ( int a[ ], int lower, int upper ) {  int i ;  if ( upper > lower ) {   i = split ( a,

Algorithm for stack using array, write an algorithm for stack using array p...

write an algorithm for stack using array performing the operations as insertion ,deletion , display,isempty,isfull.

Representation of a sparse matrix, Let us assume a sparse matrix from stora...

Let us assume a sparse matrix from storage view point. Assume that the entire sparse matrix is stored. Then, a significant amount of memory that stores the matrix consists of zeroe

Applications in file systems of avl trees, 1. In computer science, a classi...

1. In computer science, a classic problem is how to dynamically store information so as to let for quick look up. This searching problem arises frequently in dictionaries, symbol t

Explain all-pair shortest-paths problem, Explain All-pair shortest-paths pr...

Explain All-pair shortest-paths problem Given a weighted linked graph (undirected or directed), the all pairs shortest paths problem asks to find the distances (the lengths of

Data Warehousing, Assume you are in the insurance business. Find two exampl...

Assume you are in the insurance business. Find two examples of Type 2 slowly changing dimensions in that business. As an analyst on the project, write the specifications for applyi

Present the algorithm of binary search. , B i n a ry Search Alg...

B i n a ry Search Algorithm is given as follows 1. if (low > high) 2.     return (-1) 3. mid = (low +high)/2; 4. if ( X = = a [mid]) 5.      return (mid); 6.

Example of pre order traversal, Example of pre order traversal: Reading of...

Example of pre order traversal: Reading of a book, since we do not read next chapter unless we complete all sections of previous chapter & all its sections. Figure  : Rea

Data Mining and Neural Networks, I am looking for some help with a data min...

I am looking for some help with a data mining class with questions that are about neural networks and decision trees. Can you help? I can send document with questions.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd