Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
This notation gives an upper bound for a function to within a constant factor. Given Figure illustrates the plot of f(n) = O(g(n)) depend on big O notation. We write f(n) = O(g(n)) if there are positive constants n0 & c such that to the right of n0, the value of f(n) always lies on or below cg(n).
Figure: Plot of f(n) = O(g(n))
Mathematically specking, for a given function g(n), we specified a set of functions through O(g(n)) by the following notation:
O(g(n)) = {f(n) : There exists a positive constant c and n0 such that 0 ≤ f(n) ≤ cg(n)
for all n ≥ n0 }
Obviously, we employ O-notation to describe the upper bound onto a function using a constant factor c.
We can view from the earlier definition of Θ that Θ is a tighter notation in comparison of big-O notation. f(n) = an + c is O(n) is also O(n2), but O (n) is asymptotically tight while O(n2) is notation.
While in terms of Θ notation, the above function f(n) is Θ (n). Because of the reason big-O notation is upper bound of function, it is frequently used to define the worst case running time of algorithms.
Question 1 What do you mean by Amortization? Question 2 Explain the following Big Oh notation (O) Omega notation (Ω) Theta notation (Θ) Question 3 Di
How divide and conquer technique can be applied to binary trees? As the binary tree definition itself separates a binary tree into two smaller structures of the similar type,
Q. Write down a non recursive algorithm to traverse a binary tree in order. Ans: N on - recursive algorithm to traverse a binary tree in inorder is as
Define the term - Array A fixed length, ordered collection of values of same type stored in contiguous memory locations; collection may be ordered in several dimensions.
Let us assume a sparse matrix from storage view point. Assume that the entire sparse matrix is stored. Then, a significant amount of memory that stores the matrix consists of zeroe
program on function loading
Ask question #Minimum 1cepted#
Write an algorithm for multiplication of two sparse matrices using Linked Lists.
In this unit, we have learned how the stacks are implemented using arrays and using liked list. Also, the advantages and disadvantages of using these two schemes were discussed. Fo
sir how can i explain deletion process in a data structure
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd