Bernoulli differential equations, Mathematics

Assignment Help:

In this case we are going to consider differential equations in the form,

y′ + p ( x ) y q ( x ) y n

Here p(x) and q(x) are continuous functions in the interval we're working on and n is a real number.  Differential equations in this form are termed as Bernoulli Equations.

First notice that if n = 0 or n = 1 so the equation is linear and we already identify how to resolve it in these cases. Thus, in this case we're going to be considering solutions for values of n other than these two.

In order to resolve these we'll first divide the differential equation via yn to find,

y-n y' + p(x) y1-n = q (x)

We are now uses the substitution v = y1-n to convert this in a differential equation in terms of v.  When we'll see this will cause a differential equation which we can resolve.

We are going to have to be careful along with this though as it comes to dealing along with the derivative, y′.  We require determining just what y′ is in terms of our substitution. It is simple to do than it might at first look to be. All which we require to do is differentiate both sides of our substitution regarding x. Note here that both v and y are functions of x and so we'll require using the chain rule on the right side.  If you keep in mind your Calculus I you'll recall it is just implicit differentiation.  Thus, taking the derivative provides us:

n' = (1 - n) y-n y'

Then, plugging it and also our substitution in the differential equation provides:

1/(1- n) n' + p(x) n = q(x)

It is a linear differential equation which we can solve for v and once we get this in hand we can also find the solution to the original differential equation through plugging v back in our substitution and solving for y.


Related Discussions:- Bernoulli differential equations

Evaluate the limit, Evaluate the given limit. Solution : It is a ...

Evaluate the given limit. Solution : It is a combination of many of the functions listed above and none of the limited are violated so all we have to do is plug in x = 3

Arthemetic progreession, ball are arranged in rows to form an equilateral t...

ball are arranged in rows to form an equilateral triangle .the firs row consists of one abll,the second of two balls,and so on.If 669 more balls are added,then all the balls canbe

What percentage of the soda purchased was cola, 3/5 of the soda purchased a...

3/5 of the soda purchased at the football game was cola. What percentage of the soda purchased was cola? Change the fraction to a decimal through dividing the numerator through

Upper limit of normal , Frequently, tests that yield abnormal results are r...

Frequently, tests that yield abnormal results are repeated for confirmation.  What is the probability that for a usual person a test will be at least 1.5 times as high as the upper

Quantitative techniques, mentioning the type of business you could start an...

mentioning the type of business you could start and the location of your business, use the steps of quantitative methods for decision making narrating them one by one in the applic

Prove that cos - sin = v2 sin , If cos?+sin? = √2 cos?, prove that cos? - ...

If cos?+sin? = √2 cos?, prove that cos? - sin? =  √2 sin ?. Ans:    Cos? + Sin? =  √2 Cos? ⇒ ( Cos? + Sin?) 2  = 2Cos 2 ? ⇒ Cos 2 ? + Sin 2 ?+2Cos? Sin? = 2Cos 2 ? ⇒

Proof of various limit properties, PROOF OF VARIOUS LIMIT PROPERTIES In...

PROOF OF VARIOUS LIMIT PROPERTIES In this section we are going to prove several of the fundamental facts and properties about limits which we saw previously. Before proceeding

Product moment coefficient (r), Product Moment Coefficient (r) ...

Product Moment Coefficient (r) This gives an indication of the strength of the linear relationship among two variables.                                     N

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd