Bernoulli differential equations, Mathematics

Assignment Help:

In this case we are going to consider differential equations in the form,

y′ + p ( x ) y q ( x ) y n

Here p(x) and q(x) are continuous functions in the interval we're working on and n is a real number.  Differential equations in this form are termed as Bernoulli Equations.

First notice that if n = 0 or n = 1 so the equation is linear and we already identify how to resolve it in these cases. Thus, in this case we're going to be considering solutions for values of n other than these two.

In order to resolve these we'll first divide the differential equation via yn to find,

y-n y' + p(x) y1-n = q (x)

We are now uses the substitution v = y1-n to convert this in a differential equation in terms of v.  When we'll see this will cause a differential equation which we can resolve.

We are going to have to be careful along with this though as it comes to dealing along with the derivative, y′.  We require determining just what y′ is in terms of our substitution. It is simple to do than it might at first look to be. All which we require to do is differentiate both sides of our substitution regarding x. Note here that both v and y are functions of x and so we'll require using the chain rule on the right side.  If you keep in mind your Calculus I you'll recall it is just implicit differentiation.  Thus, taking the derivative provides us:

n' = (1 - n) y-n y'

Then, plugging it and also our substitution in the differential equation provides:

1/(1- n) n' + p(x) n = q(x)

It is a linear differential equation which we can solve for v and once we get this in hand we can also find the solution to the original differential equation through plugging v back in our substitution and solving for y.


Related Discussions:- Bernoulli differential equations

Determine the range of given algorithm, The division algorithm says that wh...

The division algorithm says that when a is divided by b, a unique quotient and remainder is obtained. For a fixed integer b where b ≥ 2, consider the function f : Z → Z given by f(

Write prim's algorithm, Write Prim's Algorithm.   Ans: Prim's algorithm...

Write Prim's Algorithm.   Ans: Prim's algorithm to find out a minimum spanning tree from a weighted graph in step by step form is given below.  Let G = (V, E) be graph and S

Find the number of males and females in the village, The population of the ...

The population of the village is 5000.  If in a year, the number of males were to increase by 5% and that of a female by 3% annually, the population would grow to 5202 at the end o

Rules of game theory, Rules Of Game Theory i.   The number of competito...

Rules Of Game Theory i.   The number of competitors is finite ii.   There is conflict of interests among the participants iii.  Each of these participants has available t

Course work2 , (b) The arity of an operator in propositional logic is the n...

(b) The arity of an operator in propositional logic is the number of propositional variables that it acts on – for example, binary operations (e.g, AND, OR, XOR…) act on two propo

Question, What is a marketing plan

What is a marketing plan

Factors, What are the factors of 956

What are the factors of 956

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd