Bernoulli differential equations, Mathematics

Assignment Help:

In this case we are going to consider differential equations in the form,

y′ + p ( x ) y q ( x ) y n

Here p(x) and q(x) are continuous functions in the interval we're working on and n is a real number.  Differential equations in this form are termed as Bernoulli Equations.

First notice that if n = 0 or n = 1 so the equation is linear and we already identify how to resolve it in these cases. Thus, in this case we're going to be considering solutions for values of n other than these two.

In order to resolve these we'll first divide the differential equation via yn to find,

y-n y' + p(x) y1-n = q (x)

We are now uses the substitution v = y1-n to convert this in a differential equation in terms of v.  When we'll see this will cause a differential equation which we can resolve.

We are going to have to be careful along with this though as it comes to dealing along with the derivative, y′.  We require determining just what y′ is in terms of our substitution. It is simple to do than it might at first look to be. All which we require to do is differentiate both sides of our substitution regarding x. Note here that both v and y are functions of x and so we'll require using the chain rule on the right side.  If you keep in mind your Calculus I you'll recall it is just implicit differentiation.  Thus, taking the derivative provides us:

n' = (1 - n) y-n y'

Then, plugging it and also our substitution in the differential equation provides:

1/(1- n) n' + p(x) n = q(x)

It is a linear differential equation which we can solve for v and once we get this in hand we can also find the solution to the original differential equation through plugging v back in our substitution and solving for y.


Related Discussions:- Bernoulli differential equations

Fiancial project, With your current loan, explain how much additional money...

With your current loan, explain how much additional money you would need to add to your monthly payment to pay off your loan in 20 years instead of 25. Decide whether or not it wou

Example of implicit differentiation, Example of Implicit differentiation ...

Example of Implicit differentiation So, now it's time to do our first problem where implicit differentiation is required, unlike the first example where we could actually avoid

Maths, f all the permutations of the letters of the word chalk are written ...

f all the permutations of the letters of the word chalk are written in a dictionary the rank of this word will be?

Project, report on shares and dovidend using newspaer

report on shares and dovidend using newspaer

Shares and dividends, at what price 6.25% rs 100 share be quoted when the m...

at what price 6.25% rs 100 share be quoted when the money is worth 5%

Term paper topics, please suggest me that how can i get the term papers top...

please suggest me that how can i get the term papers topics?

Example of function, Example  Suppose the demand and cost functio...

Example  Suppose the demand and cost functions are given by          Q = 21 - 0.1P and C = 200 + 10Q Where,          Q - Quantity sold

The definite integral- area under a curve, The Definite Integ...

The Definite Integral Area under a Curve If there exists an irregularly shaped curve, y = f(x) then there is no formula to find out

How many feet huge is her dining room, Audrey measured the width of her din...

Audrey measured the width of her dining room in inches. It is 150 inches. How many feet huge is her dining room? There are 12 inches in a foot. Divide 150 by 12 to find out the

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd