Bernoulli differential equations, Mathematics

Assignment Help:

In this case we are going to consider differential equations in the form,

y′ + p ( x ) y q ( x ) y n

Here p(x) and q(x) are continuous functions in the interval we're working on and n is a real number.  Differential equations in this form are termed as Bernoulli Equations.

First notice that if n = 0 or n = 1 so the equation is linear and we already identify how to resolve it in these cases. Thus, in this case we're going to be considering solutions for values of n other than these two.

In order to resolve these we'll first divide the differential equation via yn to find,

y-n y' + p(x) y1-n = q (x)

We are now uses the substitution v = y1-n to convert this in a differential equation in terms of v.  When we'll see this will cause a differential equation which we can resolve.

We are going to have to be careful along with this though as it comes to dealing along with the derivative, y′.  We require determining just what y′ is in terms of our substitution. It is simple to do than it might at first look to be. All which we require to do is differentiate both sides of our substitution regarding x. Note here that both v and y are functions of x and so we'll require using the chain rule on the right side.  If you keep in mind your Calculus I you'll recall it is just implicit differentiation.  Thus, taking the derivative provides us:

n' = (1 - n) y-n y'

Then, plugging it and also our substitution in the differential equation provides:

1/(1- n) n' + p(x) n = q(x)

It is a linear differential equation which we can solve for v and once we get this in hand we can also find the solution to the original differential equation through plugging v back in our substitution and solving for y.


Related Discussions:- Bernoulli differential equations

Calculate the total surface area which is exposed , A golf ball has a diame...

A golf ball has a diameter equal to 4.1cm. Its surface has 150 dimples each of radius 2mm. Calculate the total surface area which is exposed to the surroundings assuming that the d

Three times the larger of the two numbers, If three times the larger of the...

If three times the larger of the two numbers is divided by the smaller, then the quotient is 4 and remainder is 5. If 6 times the smaller is divided by the larger, the quotient is

Exercise to think about this aspect of children- maths, Doing the following...

Doing the following exercise will give you and opportunity to think about this aspect of children. E1) List some illustrations of exploration by four or five-year-olds that you

The prerequisites for multiplication, THE PREREQUISITES FOR MULTIPLICATION ...

THE PREREQUISITES FOR MULTIPLICATION : The word 'multiply', used in ordinary language, bears the meaning 'increase enormously For instance, bacteria multiply in favourable conditi

Forced - damped vibrations, It is the full blown case where we consider eve...

It is the full blown case where we consider every final possible force which can act on the system. The differential equation in this case, Mu'' + γu'  + ku = F( t) The displ

quantitative, how to find group mean, mode and media

how to find group mean, mode and median

Wavy curve method, In order to compute the inequalities of the form ...

In order to compute the inequalities of the form   where n 1 , n 2 , ....... , n k , m 1 , m 2 , ....... , m p are natural and real numbers and a 1 , a 2 , ... , a k ,

Explain that odd positive integer to be a perfect square, Show that for odd...

Show that for odd positive integer to be a perfect square, it should be of the form 8k +1. Let a=2m+1 Ans: Squaring both sides we get a2 = 4m (m +1) + 1 ∴ product of two

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd