Bernoulli differential equations, Mathematics

Assignment Help:

In this case we are going to consider differential equations in the form,

y′ + p ( x ) y q ( x ) y n

Here p(x) and q(x) are continuous functions in the interval we're working on and n is a real number.  Differential equations in this form are termed as Bernoulli Equations.

First notice that if n = 0 or n = 1 so the equation is linear and we already identify how to resolve it in these cases. Thus, in this case we're going to be considering solutions for values of n other than these two.

In order to resolve these we'll first divide the differential equation via yn to find,

y-n y' + p(x) y1-n = q (x)

We are now uses the substitution v = y1-n to convert this in a differential equation in terms of v.  When we'll see this will cause a differential equation which we can resolve.

We are going to have to be careful along with this though as it comes to dealing along with the derivative, y′.  We require determining just what y′ is in terms of our substitution. It is simple to do than it might at first look to be. All which we require to do is differentiate both sides of our substitution regarding x. Note here that both v and y are functions of x and so we'll require using the chain rule on the right side.  If you keep in mind your Calculus I you'll recall it is just implicit differentiation.  Thus, taking the derivative provides us:

n' = (1 - n) y-n y'

Then, plugging it and also our substitution in the differential equation provides:

1/(1- n) n' + p(x) n = q(x)

It is a linear differential equation which we can solve for v and once we get this in hand we can also find the solution to the original differential equation through plugging v back in our substitution and solving for y.


Related Discussions:- Bernoulli differential equations

Simplify the expression, Simplify the following expression and state the co...

Simplify the following expression and state the coefficient of each variables (a)6m-4-2m+15 (b)4x+6y-3x+5y

Decision-making under conditions of certainty, Decision-Making Under Condit...

Decision-Making Under Conditions of Certainty Conditions of certainty tend to be rare, especially when significant decisions are involved. Under conditions of certainty, decis

Minimum value of the function, How the property AM>or = GM used to get min...

How the property AM>or = GM used to get minimum value of the function......e,g for what condition of a and b does minimum value of a tan^2 x + b cot^2 x equals maximum value of a

Find quadratic equation using the quadratic formula, Find quadratic equatio...

Find quadratic equation using the Quadratic Formula: Solve the subsequent quadratic equation using the Quadratic Formula. 4x 2 + 2 = x 2 - 7x: Solution: Step 1.

2(sin 6+cos6) - 3(sin4+cos4)+1 = 0, 2(sin 6 ?+cos 6 ?) - 3(sin 4 ?+cos 4 ?...

2(sin 6 ?+cos 6 ?) - 3(sin 4 ?+cos 4 ?)+1 = 0 Ans:    (Sin 2 ?)3  + (Cos 2 ?)3-3 (Sin 4 ?+(Cos 4 ?)+1=0 Consider (Sin 2 ?)3  +(Cos 2 ?)3 ⇒(Sin 2 ?+Cos 2 ?)3-3 Sin 2 ?Co

Show that of all right triangles inscribed in a circle, Show that of all ri...

Show that of all right triangles inscribed in a circle, the triangle with maximum perimeter is isosceles.

Permutations and Combinations, How many 4 digit number lass than 6000 can b...

How many 4 digit number lass than 6000 can be made with the digits 7,6,4 and 2 if digits are not repeated?

Children learn maths by experiencing things, Children Learn By Experiencing...

Children Learn By Experiencing Things : One view about learning says that children construct knowledge by acting upon things. They pick up things, throw them, break them, join the

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd