Bernoulli differential equations, Mathematics

Assignment Help:

In this case we are going to consider differential equations in the form,

y′ + p ( x ) y q ( x ) y n

Here p(x) and q(x) are continuous functions in the interval we're working on and n is a real number.  Differential equations in this form are termed as Bernoulli Equations.

First notice that if n = 0 or n = 1 so the equation is linear and we already identify how to resolve it in these cases. Thus, in this case we're going to be considering solutions for values of n other than these two.

In order to resolve these we'll first divide the differential equation via yn to find,

y-n y' + p(x) y1-n = q (x)

We are now uses the substitution v = y1-n to convert this in a differential equation in terms of v.  When we'll see this will cause a differential equation which we can resolve.

We are going to have to be careful along with this though as it comes to dealing along with the derivative, y′.  We require determining just what y′ is in terms of our substitution. It is simple to do than it might at first look to be. All which we require to do is differentiate both sides of our substitution regarding x. Note here that both v and y are functions of x and so we'll require using the chain rule on the right side.  If you keep in mind your Calculus I you'll recall it is just implicit differentiation.  Thus, taking the derivative provides us:

n' = (1 - n) y-n y'

Then, plugging it and also our substitution in the differential equation provides:

1/(1- n) n' + p(x) n = q(x)

It is a linear differential equation which we can solve for v and once we get this in hand we can also find the solution to the original differential equation through plugging v back in our substitution and solving for y.


Related Discussions:- Bernoulli differential equations

Find extrema & relative extrema f ( x ) = x3 on [-2, Recognizes the absolut...

Recognizes the absolute extrema & relative extrema for the given function.                                                    f ( x ) = x 3      on        [-2, 2] Solution :

Find the area of triangle, Find the area of TRIANGLE ? To find the area...

Find the area of TRIANGLE ? To find the area of a triangle, multiply the base (b) by the height (h), and divide the resulting number in half. In other words, area is. It is

Demerits and merit-the geometric mean , The geometric mean Merits ...

The geometric mean Merits i.  This makes use of all the values described except while x = 0 or negative ii.   This is the best measure for industrial increase rates

If 967.234 is divided by 10 how will the decimal point move, If 967.234 is ...

If 967.234 is divided by 10, how will the decimal point move? It will move one place to the left. While dividing by multiples of 10, the decimal point is moved to the left acco

Percentage, a washing machine costs $640 plus an installation charge of 7.5...

a washing machine costs $640 plus an installation charge of 7.5% what is the totalcost?

Trigonometry 2, three towns are situated in such away that town B is 120 ki...

three towns are situated in such away that town B is 120 kilometers on a bearing of 030 degrees from town A. Town C is 210 kilometers on a bearing of 110 degrees from town A (a)ca

Simultaneous equations, two rolls of carpet cost £574, the first cost £8 pe...

two rolls of carpet cost £574, the first cost £8 per meter, the second which is 7m longer costs £7 p/m. how many meters are there in each roll

Counting, how do i count by 45s

how do i count by 45s

Linear equation, The sum of the digit number is 7. If the digits are revers...

The sum of the digit number is 7. If the digits are reversed , the number formed is less than the original number. find the number

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd