Bernoulli differential equations, Mathematics

Assignment Help:

In this case we are going to consider differential equations in the form,

y′ + p ( x ) y q ( x ) y n

Here p(x) and q(x) are continuous functions in the interval we're working on and n is a real number.  Differential equations in this form are termed as Bernoulli Equations.

First notice that if n = 0 or n = 1 so the equation is linear and we already identify how to resolve it in these cases. Thus, in this case we're going to be considering solutions for values of n other than these two.

In order to resolve these we'll first divide the differential equation via yn to find,

y-n y' + p(x) y1-n = q (x)

We are now uses the substitution v = y1-n to convert this in a differential equation in terms of v.  When we'll see this will cause a differential equation which we can resolve.

We are going to have to be careful along with this though as it comes to dealing along with the derivative, y′.  We require determining just what y′ is in terms of our substitution. It is simple to do than it might at first look to be. All which we require to do is differentiate both sides of our substitution regarding x. Note here that both v and y are functions of x and so we'll require using the chain rule on the right side.  If you keep in mind your Calculus I you'll recall it is just implicit differentiation.  Thus, taking the derivative provides us:

n' = (1 - n) y-n y'

Then, plugging it and also our substitution in the differential equation provides:

1/(1- n) n' + p(x) n = q(x)

It is a linear differential equation which we can solve for v and once we get this in hand we can also find the solution to the original differential equation through plugging v back in our substitution and solving for y.


Related Discussions:- Bernoulli differential equations

Classifying critical points, Classifying critical points : Let's classify ...

Classifying critical points : Let's classify critical points as relative maximums, relative minimums or neither minimums or maximums. Fermat's Theorem told us that all relative

Multiplication and division, you want to share 34 pencils among 6 friends ....

you want to share 34 pencils among 6 friends .How many would each friend get?

Determine the quotient and remainder , Let a = 5200 and b = 1320. (a) If...

Let a = 5200 and b = 1320. (a) If a is the dividend and b is the divisor, determine the quotient q and remainder r. (b) Use the Euclidean Algorithm to find gcd(a; b). (c)

Separable differential equations, We are here going to begin looking at non...

We are here going to begin looking at nonlinear first order differential equations. The first type of nonlinear first order differential equations which we will see is separable di

Limit comparison test - sequences and series, Limit Comparison Test Ass...

Limit Comparison Test Assume that we have two series ∑a n and ∑b n with a n , b n   ≥ 0 for all n. Determine, If c is positive (i.e. c > 0 ) and is finite (i.e. c

Decomposing polygons to find area, find the area of this figure in square m...

find the area of this figure in square millimeter measure each segment to the nearest millmeter

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd