Bernoulli differential equations, Mathematics

Assignment Help:

In this case we are going to consider differential equations in the form,

y′ + p ( x ) y q ( x ) y n

Here p(x) and q(x) are continuous functions in the interval we're working on and n is a real number.  Differential equations in this form are termed as Bernoulli Equations.

First notice that if n = 0 or n = 1 so the equation is linear and we already identify how to resolve it in these cases. Thus, in this case we're going to be considering solutions for values of n other than these two.

In order to resolve these we'll first divide the differential equation via yn to find,

y-n y' + p(x) y1-n = q (x)

We are now uses the substitution v = y1-n to convert this in a differential equation in terms of v.  When we'll see this will cause a differential equation which we can resolve.

We are going to have to be careful along with this though as it comes to dealing along with the derivative, y′.  We require determining just what y′ is in terms of our substitution. It is simple to do than it might at first look to be. All which we require to do is differentiate both sides of our substitution regarding x. Note here that both v and y are functions of x and so we'll require using the chain rule on the right side.  If you keep in mind your Calculus I you'll recall it is just implicit differentiation.  Thus, taking the derivative provides us:

n' = (1 - n) y-n y'

Then, plugging it and also our substitution in the differential equation provides:

1/(1- n) n' + p(x) n = q(x)

It is a linear differential equation which we can solve for v and once we get this in hand we can also find the solution to the original differential equation through plugging v back in our substitution and solving for y.


Related Discussions:- Bernoulli differential equations

Close Figure, What is a close figure in plane?

What is a close figure in plane?

Find the volume of the liquid , A vessel in shape of a inverted cone is sur...

A vessel in shape of a inverted cone is surmounted by a cylinder has a common radius of 7cm this was filled with liquid till it covered one third the height of the cylinder. If the

Find the length of the second diagonal, Find the length of the second diago...

Find the length of the second diagonal of a rhombus, whose side is 5cm and one of the diagonals is 6cm.

Example of distributive law, Maya gives the children examples of distributi...

Maya gives the children examples of distributive with small numbers initially, and leads them towards discovering the law. The usual way she does this is to give the children probl

#titl., class 10 Q.trigonometric formula of 1 term

class 10 Q.trigonometric formula of 1 term

Triganometry, Ask question #Minimum 100 words what is the hypotunus of a r...

Ask question #Minimum 100 words what is the hypotunus of a right bangled triangle a=5@ b=25 find c accwhepted#

Random variable, RANDOM VARIABLE A variable which assumes differ...

RANDOM VARIABLE A variable which assumes different numerical values as a result of random experiments or random occurrences is known as a random variable. The rainfal

Percentage, A person spent 12.5% of his money and then rs.1600 and then 40%...

A person spent 12.5% of his money and then rs.1600 and then 40% of the remaining,now left rs.960 with him.What is his original money?

Trigonometry, In the riangle ABC the AB=12 cm,AC=28 cm and angle ABC=120 de...

In the riangle ABC the AB=12 cm,AC=28 cm and angle ABC=120 degrees.BC=?

Definite integral, Definite Integral : Given a function f ( x ) which is c...

Definite Integral : Given a function f ( x ) which is continuous on the interval [a,b] we divide the interval in n subintervals of equivalent width, Δx , and from each interval se

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd