Bernoulli differential equations, Mathematics

Assignment Help:

In this case we are going to consider differential equations in the form,

y′ + p ( x ) y q ( x ) y n

Here p(x) and q(x) are continuous functions in the interval we're working on and n is a real number.  Differential equations in this form are termed as Bernoulli Equations.

First notice that if n = 0 or n = 1 so the equation is linear and we already identify how to resolve it in these cases. Thus, in this case we're going to be considering solutions for values of n other than these two.

In order to resolve these we'll first divide the differential equation via yn to find,

y-n y' + p(x) y1-n = q (x)

We are now uses the substitution v = y1-n to convert this in a differential equation in terms of v.  When we'll see this will cause a differential equation which we can resolve.

We are going to have to be careful along with this though as it comes to dealing along with the derivative, y′.  We require determining just what y′ is in terms of our substitution. It is simple to do than it might at first look to be. All which we require to do is differentiate both sides of our substitution regarding x. Note here that both v and y are functions of x and so we'll require using the chain rule on the right side.  If you keep in mind your Calculus I you'll recall it is just implicit differentiation.  Thus, taking the derivative provides us:

n' = (1 - n) y-n y'

Then, plugging it and also our substitution in the differential equation provides:

1/(1- n) n' + p(x) n = q(x)

It is a linear differential equation which we can solve for v and once we get this in hand we can also find the solution to the original differential equation through plugging v back in our substitution and solving for y.


Related Discussions:- Bernoulli differential equations

Interpretations of definite integral, Interpretations of Definite Integral ...

Interpretations of Definite Integral There are some quick interpretations of the definite integral which we can give here. Firstly, one possible interpretation of the defini

Project, elliptical path of celestial bodies

elliptical path of celestial bodies

Abstract algebra, How many homomorphism are there from z2 to z3. Zn is grou...

How many homomorphism are there from z2 to z3. Zn is group modulo n

Differential equations, Find the normalized differential equation which has...

Find the normalized differential equation which has {x, xex} as its fundamental set

Solving trig equations with calculators part ii, Solving Trig Equations wit...

Solving Trig Equations with Calculators, Part II : Since this document is also being prepared for viewing on the web we split this section into two parts to keep the size of the

Problem, La proporción de empleados de una empresa que usan su auto para ir...

La proporción de empleados de una empresa que usan su auto para ir al trabajo es 5:16. Si hay un total de 800 empleados, diga la cantidad de autos que se espera que haya estacionad

Relationship between the graph and inverse function, Interesting relationsh...

Interesting relationship between the graph of a function and the graph of its inverse : There is one last topic that we have to address quickly before we leave this section.  Ther

Direction fields, This topic is specified its own section for a couple of p...

This topic is specified its own section for a couple of purposes. Firstly, understanding direction fields and what they tell us regarding a differential equation as well as its sol

Kara brought $23 with her when she went shopping, Kara brought $23 with her...

Kara brought $23 with her when she went shopping. She spent $3.27 for lunch and $14.98 on a shirt. How much money does she have left? The two items that Kara bought must be sub

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd