Bernoulli differential equations, Mathematics

Assignment Help:

In this case we are going to consider differential equations in the form,

y′ + p ( x ) y q ( x ) y n

Here p(x) and q(x) are continuous functions in the interval we're working on and n is a real number.  Differential equations in this form are termed as Bernoulli Equations.

First notice that if n = 0 or n = 1 so the equation is linear and we already identify how to resolve it in these cases. Thus, in this case we're going to be considering solutions for values of n other than these two.

In order to resolve these we'll first divide the differential equation via yn to find,

y-n y' + p(x) y1-n = q (x)

We are now uses the substitution v = y1-n to convert this in a differential equation in terms of v.  When we'll see this will cause a differential equation which we can resolve.

We are going to have to be careful along with this though as it comes to dealing along with the derivative, y′.  We require determining just what y′ is in terms of our substitution. It is simple to do than it might at first look to be. All which we require to do is differentiate both sides of our substitution regarding x. Note here that both v and y are functions of x and so we'll require using the chain rule on the right side.  If you keep in mind your Calculus I you'll recall it is just implicit differentiation.  Thus, taking the derivative provides us:

n' = (1 - n) y-n y'

Then, plugging it and also our substitution in the differential equation provides:

1/(1- n) n' + p(x) n = q(x)

It is a linear differential equation which we can solve for v and once we get this in hand we can also find the solution to the original differential equation through plugging v back in our substitution and solving for y.


Related Discussions:- Bernoulli differential equations

Test of homogeneity , Test of homogeneity This is concerned along with...

Test of homogeneity This is concerned along with the proposition that several populations are homogenous along with respect to some characteristic of interest for example; one

Linear equations in one variable, three prices are to be distributed in a q...

three prices are to be distributed in a quiz contest.The value of the second prize is five sixths the value of the first prize and the value of the third prize is fourfifth that of

Describe about arithmetic and geometric series, Describe about Arithmetic a...

Describe about Arithmetic and Geometric Series? When the terms of a sequence are added together instead of separated by commas, the sequence becomes a series. You will use seri

DETERMINANT, IF 7 AND 2 ARE TWO ROOTS OF THE EQUATION |X 3 7 2 X 2 7 6 X...

IF 7 AND 2 ARE TWO ROOTS OF THE EQUATION |X 3 7 2 X 2 7 6 X |=0 THEN FIND THE THIRD ROOT IS

Explain adding negative fraction, Explain Adding Negative Fraction? To...

Explain Adding Negative Fraction? To add negative fractions: 1. Find a common denominator. 2. Change the fractions to their equivalents, so that they have common denominators

Share and dividend, i want to get market value of 10 popular shares of all ...

i want to get market value of 10 popular shares of all working days in a week

#rounding off, I am the least two digit number which round off to 100?

I am the least two digit number which round off to 100?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd