Bernoulli differential equations, Mathematics

Assignment Help:

In this case we are going to consider differential equations in the form,

y′ + p ( x ) y q ( x ) y n

Here p(x) and q(x) are continuous functions in the interval we're working on and n is a real number.  Differential equations in this form are termed as Bernoulli Equations.

First notice that if n = 0 or n = 1 so the equation is linear and we already identify how to resolve it in these cases. Thus, in this case we're going to be considering solutions for values of n other than these two.

In order to resolve these we'll first divide the differential equation via yn to find,

y-n y' + p(x) y1-n = q (x)

We are now uses the substitution v = y1-n to convert this in a differential equation in terms of v.  When we'll see this will cause a differential equation which we can resolve.

We are going to have to be careful along with this though as it comes to dealing along with the derivative, y′.  We require determining just what y′ is in terms of our substitution. It is simple to do than it might at first look to be. All which we require to do is differentiate both sides of our substitution regarding x. Note here that both v and y are functions of x and so we'll require using the chain rule on the right side.  If you keep in mind your Calculus I you'll recall it is just implicit differentiation.  Thus, taking the derivative provides us:

n' = (1 - n) y-n y'

Then, plugging it and also our substitution in the differential equation provides:

1/(1- n) n' + p(x) n = q(x)

It is a linear differential equation which we can solve for v and once we get this in hand we can also find the solution to the original differential equation through plugging v back in our substitution and solving for y.


Related Discussions:- Bernoulli differential equations

Find the distance of the bird from the girl, A boy standing on a horizontal...

A boy standing on a horizontal plane finds a bird flying at a distance of 100m from him at an elevation of 300. A girl standing on the roof of 20 meter high building finds the angl

Multiplication of two unlike terms with opposite signs, The product on mult...

The product on multiplying - 4bc with 2a is - 8abc. That is, a term with minus sign multiplied with a term having a positive term gives a product which has a minus sign. On the

Oscar sold 2 glasses of milk for each 5 sodas he sold, Oscar sold 2 glasses...

Oscar sold 2 glasses of milk for each 5 sodas he sold. If he sold 10 glasses of milk, how many sodas did he sell? Set up a proportion along with milk/soda = 2/5 = 10x. Cross mu

Math on a spot, compare: 643,251: 633,512: 633,893. The answer is 633,512.

compare: 643,251: 633,512: 633,893. The answer is 633,512.

Hcf and lcm, The HCF & LCM of two expressions are respectively (x+3) and (x...

The HCF & LCM of two expressions are respectively (x+3) and (x cube-7x+6). If one is x square+2x-3 , other is? Solution) (x+3) * (x^3-7x+6) = (x^2+2x-3) * y      ( ) (HCF*LCM=

Integers, What are some equations for 36?

What are some equations for 36?

Hypothesis test, Describe, in your own words, the following terms and give ...

Describe, in your own words, the following terms and give an example of each. Your examples are not to be those given in the lecture notes, or provided in the textbook. By the en

Help, draw a right angle isosceles triangle with 9 triangles in it

draw a right angle isosceles triangle with 9 triangles in it

Translating word phrases into algebraic expressions, How do I solve this pr...

How do I solve this problem: Manuel is a cross-country runner for his school’s team. He jogged along the perimeter of a rectangular field at his school. The track is a rectangle th

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd