Bayes’ theorem, Mathematics

Assignment Help:

Bayes’ Theorem

In its general form, Bayes' theorem deals with specific events, such as A1, A2,...., Ak, that have prior probabilities. These events are mutually exclusive events that cover the entire sample space. Each prior probability is already known to the decision maker, and these probabilities have the following form: P(A1), P(A2),...., P(Ak). The events with prior probabilities produce, cause, or precede another event, say B.
A conditional probability relation exists between events A1, A2, ....., Ak and event B. The conditional probabilities are P(B|A1), P(B|A2), ..., P(B|Ak).

Bayes' formula allows us to calculate the probability of an event, say, A1 occurring given that event B has already occurred with a known probability, P(B). The probability of A1 occurring given that B has already occurred is the posterior (or revised) probability. It is denoted by P(A1|B). Thus, we are given P(A1) and the P(B|A1) which we use to calculate P(A1|B).

For any event Ai, Bayes' theorem has the form

2115_bayes theorem.png

 The probability that A1 and B occur simultaneously is equal to the probability that A1 occurs multiplied by the probability that B occurs given A1. Thus, we have

P(A1 and B) = P(A1) P(B|A1)

Since A1, A2, . . . . , Ak form a partition of the entire sample space when event B occurs, only one of the events in the partition occurs. Thus, we have

P(B) = P(A1 and B) + P(A and B) + .... + P(Ak and B)

We already know that for any event Ai,

P(Ai and B) = P(Ai) P(B|Ai)

When we substitute the formula for P(Ai and B) into the equation for P(B) we obtain

P(B) = P(A1) P(B|A1) + P(A2) P(B|A2) +...+ P(Ak) P(B|Ak)

If we then substitute P(B) and P(Ai and B) into the conditional probability, i.e. P(A|B) =  623_bayes theorem1.png    we obtain the generalized version of Bayes' formula, which is shown in the box.

Bayes' Theorem

P(Ai | B)  = 419_bayes theorem2.png

 

Example 

Suppose that a personnel administrator wishes to hire one person from among a number of job applicants for a clerical position. The job to be filled is fairly simple. On the basis of past experience, the personnel director feels that there is a 0.80 probability of an applicant being able to fill the position. This probability is the prior probability.

A personnel administrator usually interviews or tests each applicant, rather than select one at random. This procedure supplies additional direct information about the applicant. In light of this additional information, the personnel director may revise the prior probability about an applicant's chances for success or failure at the job. The revised probability is the posterior probability.

The terms prior and posterior refer to the time when information is collected. Before information is obtained, we have prior probabilities. Bayes' theorem provides a means of calculating posterior probabilities from prior probabilities. The next example illustrates the use of Bayes' theorem.


Related Discussions:- Bayes’ theorem

Shares and dividend, by purchasing rs.10 shares for rs.40 each mala gets 5%...

by purchasing rs.10 shares for rs.40 each mala gets 5% income on her investment. what rate of dividend is the company paying? what will be the amount of dividend if she buys 120 sh

Finding length and height with volume and width?, I figured out the volume ...

I figured out the volume and the width, but I have no idea how to use that information to get the height and the length!

Minimizing the sum of two distances, The value of y that minimizes the sum ...

The value of y that minimizes the sum of the two distances from (3,5) to (1,y) and from (1,y) to (4,9) can be written as a/b where a and b are coprime positive integers. Find a+b.

?, x/15=50/20

x/15=50/20

Find area of y = 2 x2 + 10 and y = 4 x + 16, Find out the area of the regio...

Find out the area of the region bounded by y = 2 x 2 + 10 and y = 4 x + 16 . Solution In this case the intersection points (that we'll required eventually) are not going t

Mean value theorem function, Mean Value Theorem : Suppose f (x) is a funct...

Mean Value Theorem : Suppose f (x) is a function which satisfies both of the following. 1. f ( x )is continuous on the closed interval [a,b]. 2. f ( x ) is differentiable on

Promote products and services, please let us know above promote products an...

please let us know above promote products and services..i gave the assignment from my collage

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd