Bayes’ theorem, Mathematics

Assignment Help:

Bayes’ Theorem

In its general form, Bayes' theorem deals with specific events, such as A1, A2,...., Ak, that have prior probabilities. These events are mutually exclusive events that cover the entire sample space. Each prior probability is already known to the decision maker, and these probabilities have the following form: P(A1), P(A2),...., P(Ak). The events with prior probabilities produce, cause, or precede another event, say B.
A conditional probability relation exists between events A1, A2, ....., Ak and event B. The conditional probabilities are P(B|A1), P(B|A2), ..., P(B|Ak).

Bayes' formula allows us to calculate the probability of an event, say, A1 occurring given that event B has already occurred with a known probability, P(B). The probability of A1 occurring given that B has already occurred is the posterior (or revised) probability. It is denoted by P(A1|B). Thus, we are given P(A1) and the P(B|A1) which we use to calculate P(A1|B).

For any event Ai, Bayes' theorem has the form

2115_bayes theorem.png

 The probability that A1 and B occur simultaneously is equal to the probability that A1 occurs multiplied by the probability that B occurs given A1. Thus, we have

P(A1 and B) = P(A1) P(B|A1)

Since A1, A2, . . . . , Ak form a partition of the entire sample space when event B occurs, only one of the events in the partition occurs. Thus, we have

P(B) = P(A1 and B) + P(A and B) + .... + P(Ak and B)

We already know that for any event Ai,

P(Ai and B) = P(Ai) P(B|Ai)

When we substitute the formula for P(Ai and B) into the equation for P(B) we obtain

P(B) = P(A1) P(B|A1) + P(A2) P(B|A2) +...+ P(Ak) P(B|Ak)

If we then substitute P(B) and P(Ai and B) into the conditional probability, i.e. P(A|B) =  623_bayes theorem1.png    we obtain the generalized version of Bayes' formula, which is shown in the box.

Bayes' Theorem

P(Ai | B)  = 419_bayes theorem2.png

 

Example 

Suppose that a personnel administrator wishes to hire one person from among a number of job applicants for a clerical position. The job to be filled is fairly simple. On the basis of past experience, the personnel director feels that there is a 0.80 probability of an applicant being able to fill the position. This probability is the prior probability.

A personnel administrator usually interviews or tests each applicant, rather than select one at random. This procedure supplies additional direct information about the applicant. In light of this additional information, the personnel director may revise the prior probability about an applicant's chances for success or failure at the job. The revised probability is the posterior probability.

The terms prior and posterior refer to the time when information is collected. Before information is obtained, we have prior probabilities. Bayes' theorem provides a means of calculating posterior probabilities from prior probabilities. The next example illustrates the use of Bayes' theorem.


Related Discussions:- Bayes’ theorem

Linear differential equations, The first particular case of first order dif...

The first particular case of first order differential equations which we will seem is the linear first order differential equation. In this section, unlike many of the first order

Geometry Question, Does the Angle-Side Relationship Theorm work for all tri...

Does the Angle-Side Relationship Theorm work for all triangles or just a certain type of triangle? Does is correspond with the orthocenter of a triangle?

Interpretation of the second derivative, Interpretation of the second deriv...

Interpretation of the second derivative : Now that we've discover some higher order derivatives we have to probably talk regarding an interpretation of the second derivative. I

First and second order derivative, Solution : We'll require the first and s...

Solution : We'll require the first and second derivative to do that. y'(x) = -3/2x -5/2                                     y''(x) = 15/4x -7/2 Plug these and also the funct

Age problem, three years ago,Rica was thrice as old as dandy.Three years he...

three years ago,Rica was thrice as old as dandy.Three years hence,she will be twice as old.Find their present.

What do you mean by transient state, What do you mean by transient state an...

What do you mean by transient state and steady-state queueing systems If the characteristics of a queuing system are independent of time or equivalently if the behaviour of the

Give examples on multiplication rule in probability, Example: Suppose your...

Example: Suppose your football team has 10 returning athletes and 4 new members. How many ways can the coach choose one old player and one new one? Solution:  There are 10 wa

Fractions, kim had 1/2 an orange. she gave Linda 1/4 of this. What fraction...

kim had 1/2 an orange. she gave Linda 1/4 of this. What fraction of the whole orange did Linda get?

Word problem, adison earned $25 mowing her neighbor''s lawn. then she loane...

adison earned $25 mowing her neighbor''s lawn. then she loaned her friend $18, and got $50 from her grandmother for her birthday. she now has $86. how much money did adison have to

Parametric equations and curves - polar coordinates, Parametric Equations a...

Parametric Equations and Curves Till to this point we have looked almost completely at functions in the form y = f (x) or x = h (y) and approximately all of the formulas that w

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd