Bayes’ theorem, Mathematics

Assignment Help:

Bayes’ Theorem

In its general form, Bayes' theorem deals with specific events, such as A1, A2,...., Ak, that have prior probabilities. These events are mutually exclusive events that cover the entire sample space. Each prior probability is already known to the decision maker, and these probabilities have the following form: P(A1), P(A2),...., P(Ak). The events with prior probabilities produce, cause, or precede another event, say B.
A conditional probability relation exists between events A1, A2, ....., Ak and event B. The conditional probabilities are P(B|A1), P(B|A2), ..., P(B|Ak).

Bayes' formula allows us to calculate the probability of an event, say, A1 occurring given that event B has already occurred with a known probability, P(B). The probability of A1 occurring given that B has already occurred is the posterior (or revised) probability. It is denoted by P(A1|B). Thus, we are given P(A1) and the P(B|A1) which we use to calculate P(A1|B).

For any event Ai, Bayes' theorem has the form

2115_bayes theorem.png

 The probability that A1 and B occur simultaneously is equal to the probability that A1 occurs multiplied by the probability that B occurs given A1. Thus, we have

P(A1 and B) = P(A1) P(B|A1)

Since A1, A2, . . . . , Ak form a partition of the entire sample space when event B occurs, only one of the events in the partition occurs. Thus, we have

P(B) = P(A1 and B) + P(A and B) + .... + P(Ak and B)

We already know that for any event Ai,

P(Ai and B) = P(Ai) P(B|Ai)

When we substitute the formula for P(Ai and B) into the equation for P(B) we obtain

P(B) = P(A1) P(B|A1) + P(A2) P(B|A2) +...+ P(Ak) P(B|Ak)

If we then substitute P(B) and P(Ai and B) into the conditional probability, i.e. P(A|B) =  623_bayes theorem1.png    we obtain the generalized version of Bayes' formula, which is shown in the box.

Bayes' Theorem

P(Ai | B)  = 419_bayes theorem2.png

 

Example 

Suppose that a personnel administrator wishes to hire one person from among a number of job applicants for a clerical position. The job to be filled is fairly simple. On the basis of past experience, the personnel director feels that there is a 0.80 probability of an applicant being able to fill the position. This probability is the prior probability.

A personnel administrator usually interviews or tests each applicant, rather than select one at random. This procedure supplies additional direct information about the applicant. In light of this additional information, the personnel director may revise the prior probability about an applicant's chances for success or failure at the job. The revised probability is the posterior probability.

The terms prior and posterior refer to the time when information is collected. Before information is obtained, we have prior probabilities. Bayes' theorem provides a means of calculating posterior probabilities from prior probabilities. The next example illustrates the use of Bayes' theorem.


Related Discussions:- Bayes’ theorem

???, a deposit of 10,000 was made to an account the year you were born afte...

a deposit of 10,000 was made to an account the year you were born after 12 years the account is worth 16,600 what is the simple interest rate did the account earn?

Statistics quiz.., can someone help me with a statistics quiz?

can someone help me with a statistics quiz?

Area with parametric equations - polar coordinates, Area with Parametric Eq...

Area with Parametric Equations In this section we will find out a formula for ascertaining the area under a parametric curve specified by the parametric equations, x = f (t)

What is the probability in which the marble chosen is blue, A bag holds 3 r...

A bag holds 3 red, 6 blue, 5 purple, and 2 orange marbles. One marble is selected at random. What is the probability in which the marble chosen is blue? The probability of blue

The distributive law, The Distributive Law :  If you were asked to mentall...

The Distributive Law :  If you were asked to mentally multiply 37 with 9, how would you proceed? 1 would do it as follows - 37 is 30 + 7, 30 x 9 = 270, 7 x 9 = 63, so 270 + 63, th

Demonstrates that f ( x ) = 4 x5 + x3 + 7 x - 2 mean value, Demonstrates th...

Demonstrates that f ( x ) = 4 x 5 + x 3 + 7 x - 2 has accurately one real root. Solution From basic Algebra principles we know that since f (x) is a 5 th degree polynomi

Sets, A survey of 400 of recently qualified chartered Accountant revealed t...

A survey of 400 of recently qualified chartered Accountant revealed that 112 joined industry, 120 stated practice & 160 joined the firms of practicing chartered accountants as paid

Find out the roots of the quadratic equation, Find out the roots of the fol...

Find out the roots of the following quadratic equation. 3x 2 + 7x = 0 Solution: Using Equation 6, one root is determined. x = 0 Using Equation 7, substitute the

Example of repeated eigenvalues, Illustration : Solve the following IVP. ...

Illustration : Solve the following IVP. Solution: First get the eigenvalues for the system. = l 2 - 10 l+ 25 = (l- 5) 2 l 1,2 = 5 Therefore, we got a

The paperwork to purchase your new home, You recently started the paperwork...

You recently started the paperwork to purchase your new home, and you were just notified that you can move into the house in two weeks. You decide to hire a moving company, but are

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd