Basic indefinite integrals- computing indefinite integrals, Mathematics

Assignment Help:

Basic indefinite integrals

The first integral which we'll look at is the integral of a power of x.

                               ∫xn dx = (xn +1 / n + 1)+ c,          n ≠ -1

The general rule while integrating a power of x we add one onto the exponent & then divide through the new exponent. It is clear that we will have to avoid n = -1 in this formula.  If we let n = -1 in this formula we will end up with division by zero.  We will make sure of this case in a bit.

Next is one of the simple integrals however always seems to cause problems for people.

                                      ∫ k dx = kx + c,         c & k are constants

All we're asking is what we differentiated to obtain the integrand it is pretty simple, but it does appear to cause problems on occasion.

Now let's take a look at the trig functions.

∫ sin x dx = - cos x + c              ∫ cos x dx = sin x + c

∫ sec2 x dx = tan x + c                      ∫ sec x tan x dx = sec x + c

∫ csc2 x dx = - cot x + c               ∫ csc x cot x dx = - csc x + c

2479_integeral.png

Notice as well that we just integrated two of the six trig functions here. The remaining four integrals are actually integrals which give the remaining four trig functions.  Also, be careful with signs here.  This is easy to obtain the signs for derivatives & integrals mixed up.  Again, we're asking what function we differentiated to obtain the integrand.

Now, let's take care of exponential & logarithm functions.

∫ex dx = ex + c              ∫a x dx = ( ax    /lna )+  c            ( (1/x) dx = ∫x-1 dx = ln |x |+ c

At last, let's take care of the inverse trig & hyperbolic functions.

(1/(x2+1) dx = tan -1 x + c     

∫ sinh x dx = cosh x + c                                  ∫ cosh x dx = sinh x +c

∫ sech 2 x dx = tanh x + c                              ∫ sech x tanh x dx = - sech x + c

∫ csch 2 x dx = - coth x + c                            ∫ csch x coth x dx = - csch x + c

All we are asking here is what function we differentiated to obtain the integrand the second integral could also be,

251_integrals.png

Usually we utilize the first form of this integral.

Now that we've got mostly basic integrals out of the way let's do some indefinite integrals. In all these problems remember that we can always verify our answer by differentiating and ensuring that we get the integrand.


Related Discussions:- Basic indefinite integrals- computing indefinite integrals

Algebra, Evaluate: 30 - 12÷3×2 =

Evaluate: 30 - 12÷3×2 =

In terms of x what is the area of her garden, Laura has a rectangular garde...

Laura has a rectangular garden whose width is x 3 and whose length is x4. In terms of x, what is the area of her garden? Since the area of a rectangle is A = length times widt

Equation: 4x^4+9x^4=64 , If 4x^4+9x^4=64 then the maximum value of x^2+y^2 ...

If 4x^4+9x^4=64 then the maximum value of x^2+y^2 is solution) From the eq. finding the value of x^2 and putting it in x^2 + y^2.we get 2nd eq. differentiating that and putting

Linear functions, Linear functions are of the form: y = a 0 ...

Linear functions are of the form: y = a 0 + a 1 x 1 + a 2 x 2 + ..... + a n x n where a 0 , a 1 , a 2 ..... a n are constants and x 1 , x 2 ..... x n a

Functions, find the domain of the function f(x) = (| sin inverse sin x | - ...

find the domain of the function f(x) = (| sin inverse sin x | - cos inverse cos x) ^ 1/2

Erin is painting a bathroom what is the area to be painted, Erin is paintin...

Erin is painting a bathroom along with four walls each measuring 8 ft through 5.5 ft. Ignoring the doors or windows, what is the area to be painted? The area of the room is the

Explain venn diagrams, Q. Explain Venn diagrams? Ans. Venn diagram...

Q. Explain Venn diagrams? Ans. Venn diagrams, named after the Englishman John Venn, are "area" or "region" diagrams that can be used to help visualize and organize differe

Explain multiples, Explain Multiples ? When a whole number is multiplie...

Explain Multiples ? When a whole number is multiplied by another whole number, the results you get are multiples of the whole numbers. For example,  To find the first four mult

find the vector projection - vectors, Given the vectors u = 3 i - 2 j ...

Given the vectors u = 3 i - 2 j + k ,   v = i + 2 j - 4 k ,    w = -2 i + 4 j - 5 k use vector methods to answer the following: (a) Prove u , v and w can form

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd