Basic indefinite integrals- computing indefinite integrals, Mathematics

Assignment Help:

Basic indefinite integrals

The first integral which we'll look at is the integral of a power of x.

                               ∫xn dx = (xn +1 / n + 1)+ c,          n ≠ -1

The general rule while integrating a power of x we add one onto the exponent & then divide through the new exponent. It is clear that we will have to avoid n = -1 in this formula.  If we let n = -1 in this formula we will end up with division by zero.  We will make sure of this case in a bit.

Next is one of the simple integrals however always seems to cause problems for people.

                                      ∫ k dx = kx + c,         c & k are constants

All we're asking is what we differentiated to obtain the integrand it is pretty simple, but it does appear to cause problems on occasion.

Now let's take a look at the trig functions.

∫ sin x dx = - cos x + c              ∫ cos x dx = sin x + c

∫ sec2 x dx = tan x + c                      ∫ sec x tan x dx = sec x + c

∫ csc2 x dx = - cot x + c               ∫ csc x cot x dx = - csc x + c

2479_integeral.png

Notice as well that we just integrated two of the six trig functions here. The remaining four integrals are actually integrals which give the remaining four trig functions.  Also, be careful with signs here.  This is easy to obtain the signs for derivatives & integrals mixed up.  Again, we're asking what function we differentiated to obtain the integrand.

Now, let's take care of exponential & logarithm functions.

∫ex dx = ex + c              ∫a x dx = ( ax    /lna )+  c            ( (1/x) dx = ∫x-1 dx = ln |x |+ c

At last, let's take care of the inverse trig & hyperbolic functions.

(1/(x2+1) dx = tan -1 x + c     

∫ sinh x dx = cosh x + c                                  ∫ cosh x dx = sinh x +c

∫ sech 2 x dx = tanh x + c                              ∫ sech x tanh x dx = - sech x + c

∫ csch 2 x dx = - coth x + c                            ∫ csch x coth x dx = - csch x + c

All we are asking here is what function we differentiated to obtain the integrand the second integral could also be,

251_integrals.png

Usually we utilize the first form of this integral.

Now that we've got mostly basic integrals out of the way let's do some indefinite integrals. In all these problems remember that we can always verify our answer by differentiating and ensuring that we get the integrand.


Related Discussions:- Basic indefinite integrals- computing indefinite integrals

Interpretation of r – problems in interpreting r values, Interpretation of ...

Interpretation of r - Problems in interpreting r values A high value of r as +0.9 or - 0.9 only shows a strong association among the two variables but doesn't imply that th

Standardizing a random variable, Standardizing a Random Variable       ...

Standardizing a Random Variable       If X is a random variable with E(X) = m and V(X) = s 2 , then Y = (X – m)/ s is a random variable with mean 0 and standard deviatio

Arc length for parametric equations, Arc Length for Parametric Equations ...

Arc Length for Parametric Equations L = ∫ β α √ ((dx/dt) 2 + (dy/dt) 2 ) dt Note: that we could have utilized the second formula for ds above is we had supposed inste

Linear Systems, Find the solution to the following system of equations usin...

Find the solution to the following system of equations using substitution:

Scale Drawing, Model of 180 meter tall building using a scale of 1.5 centim...

Model of 180 meter tall building using a scale of 1.5 centimeters = 3.5 meters. How tall will the model be?

Gaussian elimination, Example1 :  Solve the subsequent system of equations....

Example1 :  Solve the subsequent system of equations. -2x 1 + x 2 - x 3 = 4 x 1 + 2x 2 + 3x 3   = 13 3x 1 + x 3 = -1 Solution The initial step is to write d

If an item costs $1.45 to what amount will louise round, Louise is estimati...

Louise is estimating the cost of the groceries in her cart. She rounds the cost of every item to the nearest dollar to form her calculations. If an item costs $1.45, to what amount

Example of binomial distribution, Example:  Joanne is given a four-question...

Example:  Joanne is given a four-question multiple-choice quiz.  She hasnt studied the material to be quizzed, so she decides to answer the questions by randomly guessing the answe

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd