Basic indefinite integrals- computing indefinite integrals, Mathematics

Assignment Help:

Basic indefinite integrals

The first integral which we'll look at is the integral of a power of x.

                               ∫xn dx = (xn +1 / n + 1)+ c,          n ≠ -1

The general rule while integrating a power of x we add one onto the exponent & then divide through the new exponent. It is clear that we will have to avoid n = -1 in this formula.  If we let n = -1 in this formula we will end up with division by zero.  We will make sure of this case in a bit.

Next is one of the simple integrals however always seems to cause problems for people.

                                      ∫ k dx = kx + c,         c & k are constants

All we're asking is what we differentiated to obtain the integrand it is pretty simple, but it does appear to cause problems on occasion.

Now let's take a look at the trig functions.

∫ sin x dx = - cos x + c              ∫ cos x dx = sin x + c

∫ sec2 x dx = tan x + c                      ∫ sec x tan x dx = sec x + c

∫ csc2 x dx = - cot x + c               ∫ csc x cot x dx = - csc x + c

2479_integeral.png

Notice as well that we just integrated two of the six trig functions here. The remaining four integrals are actually integrals which give the remaining four trig functions.  Also, be careful with signs here.  This is easy to obtain the signs for derivatives & integrals mixed up.  Again, we're asking what function we differentiated to obtain the integrand.

Now, let's take care of exponential & logarithm functions.

∫ex dx = ex + c              ∫a x dx = ( ax    /lna )+  c            ( (1/x) dx = ∫x-1 dx = ln |x |+ c

At last, let's take care of the inverse trig & hyperbolic functions.

(1/(x2+1) dx = tan -1 x + c     

∫ sinh x dx = cosh x + c                                  ∫ cosh x dx = sinh x +c

∫ sech 2 x dx = tanh x + c                              ∫ sech x tanh x dx = - sech x + c

∫ csch 2 x dx = - coth x + c                            ∫ csch x coth x dx = - csch x + c

All we are asking here is what function we differentiated to obtain the integrand the second integral could also be,

251_integrals.png

Usually we utilize the first form of this integral.

Now that we've got mostly basic integrals out of the way let's do some indefinite integrals. In all these problems remember that we can always verify our answer by differentiating and ensuring that we get the integrand.


Related Discussions:- Basic indefinite integrals- computing indefinite integrals

Need help , understandin rates and unitrates

understandin rates and unitrates

Incircle, ab=8cm,bc=6cm,ca=5cm draw an incircle.

ab=8cm,bc=6cm,ca=5cm draw an incircle.

Approximating solutions to equations newtons method, Approximating solution...

Approximating solutions to equations : In this section we will look at a method for approximating solutions to equations. We all know that equations have to be solved on occasion

Forecasting by using least squares, Forecasting By Using Least Squares ...

Forecasting By Using Least Squares Data have been kept of sales over the last seven years Year 1 2 3 4 5 6

Shares and dividends, I have a maths assignment as- Use a newspaper to stud...

I have a maths assignment as- Use a newspaper to study and give a report on shares and dividends.

Find and classify the differential equation, Find and classify the equilibr...

Find and classify the equilibrium solutions of the subsequent differential equation. y' = y 2 - y - 6 Solution The equilibrium solutions are to such differential equati

Help!!!, The equation -2x^2-kx-2=0 has two different real soultions. find t...

The equation -2x^2-kx-2=0 has two different real soultions. find the set of possible values for k.

Calculate the area of rectangle , Calculate the area of RECTANGLE ? Th...

Calculate the area of RECTANGLE ? The area of a rectangle is the amount of space taken up by a rectangle, which is a two-dimensional shape. You find the area (A) of a recta

Draw the direction field, Draw the direction field for the subsequent diffe...

Draw the direction field for the subsequent differential equation. Draw the set of integral curves for this differential equation.   Solution:  y′ = y - x  To draw direct

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd