Basic indefinite integrals- computing indefinite integrals, Mathematics

Assignment Help:

Basic indefinite integrals

The first integral which we'll look at is the integral of a power of x.

                               ∫xn dx = (xn +1 / n + 1)+ c,          n ≠ -1

The general rule while integrating a power of x we add one onto the exponent & then divide through the new exponent. It is clear that we will have to avoid n = -1 in this formula.  If we let n = -1 in this formula we will end up with division by zero.  We will make sure of this case in a bit.

Next is one of the simple integrals however always seems to cause problems for people.

                                      ∫ k dx = kx + c,         c & k are constants

All we're asking is what we differentiated to obtain the integrand it is pretty simple, but it does appear to cause problems on occasion.

Now let's take a look at the trig functions.

∫ sin x dx = - cos x + c              ∫ cos x dx = sin x + c

∫ sec2 x dx = tan x + c                      ∫ sec x tan x dx = sec x + c

∫ csc2 x dx = - cot x + c               ∫ csc x cot x dx = - csc x + c

2479_integeral.png

Notice as well that we just integrated two of the six trig functions here. The remaining four integrals are actually integrals which give the remaining four trig functions.  Also, be careful with signs here.  This is easy to obtain the signs for derivatives & integrals mixed up.  Again, we're asking what function we differentiated to obtain the integrand.

Now, let's take care of exponential & logarithm functions.

∫ex dx = ex + c              ∫a x dx = ( ax    /lna )+  c            ( (1/x) dx = ∫x-1 dx = ln |x |+ c

At last, let's take care of the inverse trig & hyperbolic functions.

(1/(x2+1) dx = tan -1 x + c     

∫ sinh x dx = cosh x + c                                  ∫ cosh x dx = sinh x +c

∫ sech 2 x dx = tanh x + c                              ∫ sech x tanh x dx = - sech x + c

∫ csch 2 x dx = - coth x + c                            ∫ csch x coth x dx = - csch x + c

All we are asking here is what function we differentiated to obtain the integrand the second integral could also be,

251_integrals.png

Usually we utilize the first form of this integral.

Now that we've got mostly basic integrals out of the way let's do some indefinite integrals. In all these problems remember that we can always verify our answer by differentiating and ensuring that we get the integrand.


Related Discussions:- Basic indefinite integrals- computing indefinite integrals

Calcilate the height of the cone of which the bucket , A bucket of height 8...

A bucket of height 8 cm and made up of copper sheet is in the form of frustum of right circular cone with radii of its lower and upper ends as 3 cm and 9 cm respectively. Calculate

How many hours will it take for them to be 822 miles apart, Two trains leav...

Two trains leave the same city at the same time, one going east and the other going west. If one train is traveling at 65 mph and the other at 72 mph, how many hours will it take f

Describe graphing equations with a positive slope, Describe Graphing Equati...

Describe Graphing Equations with a Positive Slope? There are 3 steps to graphing a linear equation: 1. Identify and plot the y-intercept. 2. Determine the slope. Use the slope

Find regular grammar for given regular expression, find regular grammar for...

find regular grammar for the following regular expression: a(a+b)*(ab* +ba*)b

Domain and range, Taxable income Tax rate 0 - $18,200 0% $18,201- $37,000 1...

Taxable income Tax rate 0 - $18,200 0% $18,201- $37,000 19% $37,001 - $80,000 32.5% $80,001- $180,000 37% $180,001 and over 45% if this is graphed as a step fuction graph whats t

How many inches long is the bedroom, Raul's bedroom is 4 yards long. How ma...

Raul's bedroom is 4 yards long. How many inches long is the bedroom? There are 36 inches within a yard; 4 × 36 = 144 inches. There are 144 inches in 4 yards.

Complex numbers, find the modulus Z=(2-i)(5+i12)/(1+i2)^3

find the modulus Z=(2-i)(5+i12)/(1+i2)^3

Infinite limits, Infinite Limits : In this section we will see limits who...

Infinite Limits : In this section we will see limits whose value is infinity or minus infinity.  The primary thing we have to probably do here is to define just what we mean w

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd