Basic indefinite integrals- computing indefinite integrals, Mathematics

Assignment Help:

Basic indefinite integrals

The first integral which we'll look at is the integral of a power of x.

                               ∫xn dx = (xn +1 / n + 1)+ c,          n ≠ -1

The general rule while integrating a power of x we add one onto the exponent & then divide through the new exponent. It is clear that we will have to avoid n = -1 in this formula.  If we let n = -1 in this formula we will end up with division by zero.  We will make sure of this case in a bit.

Next is one of the simple integrals however always seems to cause problems for people.

                                      ∫ k dx = kx + c,         c & k are constants

All we're asking is what we differentiated to obtain the integrand it is pretty simple, but it does appear to cause problems on occasion.

Now let's take a look at the trig functions.

∫ sin x dx = - cos x + c              ∫ cos x dx = sin x + c

∫ sec2 x dx = tan x + c                      ∫ sec x tan x dx = sec x + c

∫ csc2 x dx = - cot x + c               ∫ csc x cot x dx = - csc x + c

2479_integeral.png

Notice as well that we just integrated two of the six trig functions here. The remaining four integrals are actually integrals which give the remaining four trig functions.  Also, be careful with signs here.  This is easy to obtain the signs for derivatives & integrals mixed up.  Again, we're asking what function we differentiated to obtain the integrand.

Now, let's take care of exponential & logarithm functions.

∫ex dx = ex + c              ∫a x dx = ( ax    /lna )+  c            ( (1/x) dx = ∫x-1 dx = ln |x |+ c

At last, let's take care of the inverse trig & hyperbolic functions.

(1/(x2+1) dx = tan -1 x + c     

∫ sinh x dx = cosh x + c                                  ∫ cosh x dx = sinh x +c

∫ sech 2 x dx = tanh x + c                              ∫ sech x tanh x dx = - sech x + c

∫ csch 2 x dx = - coth x + c                            ∫ csch x coth x dx = - csch x + c

All we are asking here is what function we differentiated to obtain the integrand the second integral could also be,

251_integrals.png

Usually we utilize the first form of this integral.

Now that we've got mostly basic integrals out of the way let's do some indefinite integrals. In all these problems remember that we can always verify our answer by differentiating and ensuring that we get the integrand.


Related Discussions:- Basic indefinite integrals- computing indefinite integrals

Find out a vector that is orthogonal to the plane, A plane is illustrated b...

A plane is illustrated by any three points that are in the plane.  If a plane consists of the points P = (1, 0,0) , Q = (1,1,1) and R = (2, -1, 3) find out a vector that is orthogo

Explain venn diagrams, Q. Explain Venn diagrams? Ans. Venn diagram...

Q. Explain Venn diagrams? Ans. Venn diagrams, named after the Englishman John Venn, are "area" or "region" diagrams that can be used to help visualize and organize differe

Interpretations of the derivative , Interpretations of the Derivative : ...

Interpretations of the Derivative : Before moving on to the section where we study how to calculate derivatives by ignoring the limits we were evaluating in the earlier secti

Plot your data on a scatter plot, Devise data that link a certain relations...

Devise data that link a certain relationship OF YOUR CHOOSING between two variables. Write a rationale stating why you chose this particular data and what you are planning to STAT

Counters and registers, design a synchronous, recycling, MOD-12 counter wit...

design a synchronous, recycling, MOD-12 counter with D FF''s. Use the states 0000 through 1011 in the counter.

Interpretations of derivatives, Interpretations of derivatives. Exampl...

Interpretations of derivatives. Example:   Find out the equation of the tangent line to                                       x 2 + y 2   =9 at the point (2, √5 ) .

Determine the inverse function f ( x ), Given f ( x ) = 3x - 2 determine ...

Given f ( x ) = 3x - 2 determine     f -1 ( x ) . Solution Now, already we know what the inverse to this function is as already we've done some work with it.  Though, it

factorial, why zero factorial is equal to on

why zero factorial is equal to one

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd