Basic indefinite integrals- computing indefinite integrals, Mathematics

Assignment Help:

Basic indefinite integrals

The first integral which we'll look at is the integral of a power of x.

                               ∫xn dx = (xn +1 / n + 1)+ c,          n ≠ -1

The general rule while integrating a power of x we add one onto the exponent & then divide through the new exponent. It is clear that we will have to avoid n = -1 in this formula.  If we let n = -1 in this formula we will end up with division by zero.  We will make sure of this case in a bit.

Next is one of the simple integrals however always seems to cause problems for people.

                                      ∫ k dx = kx + c,         c & k are constants

All we're asking is what we differentiated to obtain the integrand it is pretty simple, but it does appear to cause problems on occasion.

Now let's take a look at the trig functions.

∫ sin x dx = - cos x + c              ∫ cos x dx = sin x + c

∫ sec2 x dx = tan x + c                      ∫ sec x tan x dx = sec x + c

∫ csc2 x dx = - cot x + c               ∫ csc x cot x dx = - csc x + c

2479_integeral.png

Notice as well that we just integrated two of the six trig functions here. The remaining four integrals are actually integrals which give the remaining four trig functions.  Also, be careful with signs here.  This is easy to obtain the signs for derivatives & integrals mixed up.  Again, we're asking what function we differentiated to obtain the integrand.

Now, let's take care of exponential & logarithm functions.

∫ex dx = ex + c              ∫a x dx = ( ax    /lna )+  c            ( (1/x) dx = ∫x-1 dx = ln |x |+ c

At last, let's take care of the inverse trig & hyperbolic functions.

(1/(x2+1) dx = tan -1 x + c     

∫ sinh x dx = cosh x + c                                  ∫ cosh x dx = sinh x +c

∫ sech 2 x dx = tanh x + c                              ∫ sech x tanh x dx = - sech x + c

∫ csch 2 x dx = - coth x + c                            ∫ csch x coth x dx = - csch x + c

All we are asking here is what function we differentiated to obtain the integrand the second integral could also be,

251_integrals.png

Usually we utilize the first form of this integral.

Now that we've got mostly basic integrals out of the way let's do some indefinite integrals. In all these problems remember that we can always verify our answer by differentiating and ensuring that we get the integrand.


Related Discussions:- Basic indefinite integrals- computing indefinite integrals

The quotient of 3d3 and 9d5 is, The quotient of 3d 3 and 9d 5 is The ...

The quotient of 3d 3 and 9d 5 is The key word quotient means division so the problem becomes 1d 3 -5/ 5. Divide the coef?cients:  1d 3 /3d-5 . While dividing like bases, subt

Estimate how much did the budget increase, Previous year's budget was 12.5 ...

Previous year's budget was 12.5 million dollars. This year's budget is 14.1 million dollars. How much did the budget increase? Last year's budget must be subtracted from this y

Cartesian graph of density of water - temperature, Cartesian Graph of Densi...

Cartesian Graph of Density of Water - Temperature: Example:  The  density  of  water  was  measured  over  a  range  of  temperatures.   Plot the subsequent recorded data on

Find the total volume of the hay stack, The lower portion of a hay stack is...

The lower portion of a hay stack is an inverted cone frustum and the upper part is a cone find the total volume of the hay stack.

Dividing, I don''t know how to do the next step like if I had 73 divided by...

I don''t know how to do the next step like if I had 73 divided by 9 wouldn''t 7 go into nine 1 time then you have to do something else but that is the part I don''t understand

We know this equation a°=1.prove this?, we know that log1 to any base =0 ta...

we know that log1 to any base =0 take antilog threfore a 0 =1

Distinct eigenvalues-sketching the phase portrait, Sketch the phase portrai...

Sketch the phase portrait for the given system. Solution : From the last illustration we know that the eigenvectors and eigenvalues for this system are, This tu

Create graph showing the depth of the water , Your friends have opened an o...

Your friends have opened an ocean fishing operation that requires their fishing vessel to cross a channel, where the depth of the water (measured in metres) varies with time, and i

Generalized least squares regression, a. Estimate the following model,  C t...

a. Estimate the following model,  C t   =  β 0   +  β 1 * DI t +  ε t             Where C t = Aggregate Consumption Expenditure in Australia, quarterly data for the per

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd