Basic indefinite integrals- computing indefinite integrals, Mathematics

Assignment Help:

Basic indefinite integrals

The first integral which we'll look at is the integral of a power of x.

                               ∫xn dx = (xn +1 / n + 1)+ c,          n ≠ -1

The general rule while integrating a power of x we add one onto the exponent & then divide through the new exponent. It is clear that we will have to avoid n = -1 in this formula.  If we let n = -1 in this formula we will end up with division by zero.  We will make sure of this case in a bit.

Next is one of the simple integrals however always seems to cause problems for people.

                                      ∫ k dx = kx + c,         c & k are constants

All we're asking is what we differentiated to obtain the integrand it is pretty simple, but it does appear to cause problems on occasion.

Now let's take a look at the trig functions.

∫ sin x dx = - cos x + c              ∫ cos x dx = sin x + c

∫ sec2 x dx = tan x + c                      ∫ sec x tan x dx = sec x + c

∫ csc2 x dx = - cot x + c               ∫ csc x cot x dx = - csc x + c

2479_integeral.png

Notice as well that we just integrated two of the six trig functions here. The remaining four integrals are actually integrals which give the remaining four trig functions.  Also, be careful with signs here.  This is easy to obtain the signs for derivatives & integrals mixed up.  Again, we're asking what function we differentiated to obtain the integrand.

Now, let's take care of exponential & logarithm functions.

∫ex dx = ex + c              ∫a x dx = ( ax    /lna )+  c            ( (1/x) dx = ∫x-1 dx = ln |x |+ c

At last, let's take care of the inverse trig & hyperbolic functions.

(1/(x2+1) dx = tan -1 x + c     

∫ sinh x dx = cosh x + c                                  ∫ cosh x dx = sinh x +c

∫ sech 2 x dx = tanh x + c                              ∫ sech x tanh x dx = - sech x + c

∫ csch 2 x dx = - coth x + c                            ∫ csch x coth x dx = - csch x + c

All we are asking here is what function we differentiated to obtain the integrand the second integral could also be,

251_integrals.png

Usually we utilize the first form of this integral.

Now that we've got mostly basic integrals out of the way let's do some indefinite integrals. In all these problems remember that we can always verify our answer by differentiating and ensuring that we get the integrand.


Related Discussions:- Basic indefinite integrals- computing indefinite integrals

Initial condition for differential equations, Initial Condition(s) are a se...

Initial Condition(s) are a set of conditions, or a condition on the solution which will permit us to find out that solution which we are after.  Initial conditions are frequently a

Profit and loss, a shopkeeper buys two cameras at the same price . he sells...

a shopkeeper buys two cameras at the same price . he sells one camera at a profit of 18% and the other at a price of 10% less than the selling price of the first camera. find his p

Calculus, I need help fast with my calculus work

I need help fast with my calculus work

Mathematical science, state tha different types of models used in operation...

state tha different types of models used in operations research.

Pairs of straight lines, The equation ax2 + 2hxy + by2 =0 represents a pair...

The equation ax2 + 2hxy + by2 =0 represents a pair of straight lines passing through the origin and its angle is tan q = ±2root under h2-ab/(a+b) and even the eqn ax2+2hxy+by2+2gx+

Quantitative Technique in Marketing, a company''s advertising expenditures ...

a company''s advertising expenditures average $5,000 per month. Current sales are $29,000 and the saturation sales level is estimated at $42,000. The sales-response constant is $2,

Find the tangent to the curve, 1. Find the third and fourth derivatives of ...

1. Find the third and fourth derivatives of the function Y=5x 7 +3x-6-17x -3 2. Find the Tangent to the curve Y= 5x 3 +2x-1 At the point where x = 2.

What is the average temperature on the celsius scale, Peggy's town has an a...

Peggy's town has an average temperature of 23° Fahrenheit in the winter. What is the average temperature on the Celsius scale? If the total amount for both is 80, after that th

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd