Basic indefinite integrals- computing indefinite integrals, Mathematics

Assignment Help:

Basic indefinite integrals

The first integral which we'll look at is the integral of a power of x.

                               ∫xn dx = (xn +1 / n + 1)+ c,          n ≠ -1

The general rule while integrating a power of x we add one onto the exponent & then divide through the new exponent. It is clear that we will have to avoid n = -1 in this formula.  If we let n = -1 in this formula we will end up with division by zero.  We will make sure of this case in a bit.

Next is one of the simple integrals however always seems to cause problems for people.

                                      ∫ k dx = kx + c,         c & k are constants

All we're asking is what we differentiated to obtain the integrand it is pretty simple, but it does appear to cause problems on occasion.

Now let's take a look at the trig functions.

∫ sin x dx = - cos x + c              ∫ cos x dx = sin x + c

∫ sec2 x dx = tan x + c                      ∫ sec x tan x dx = sec x + c

∫ csc2 x dx = - cot x + c               ∫ csc x cot x dx = - csc x + c

2479_integeral.png

Notice as well that we just integrated two of the six trig functions here. The remaining four integrals are actually integrals which give the remaining four trig functions.  Also, be careful with signs here.  This is easy to obtain the signs for derivatives & integrals mixed up.  Again, we're asking what function we differentiated to obtain the integrand.

Now, let's take care of exponential & logarithm functions.

∫ex dx = ex + c              ∫a x dx = ( ax    /lna )+  c            ( (1/x) dx = ∫x-1 dx = ln |x |+ c

At last, let's take care of the inverse trig & hyperbolic functions.

(1/(x2+1) dx = tan -1 x + c     

∫ sinh x dx = cosh x + c                                  ∫ cosh x dx = sinh x +c

∫ sech 2 x dx = tanh x + c                              ∫ sech x tanh x dx = - sech x + c

∫ csch 2 x dx = - coth x + c                            ∫ csch x coth x dx = - csch x + c

All we are asking here is what function we differentiated to obtain the integrand the second integral could also be,

251_integrals.png

Usually we utilize the first form of this integral.

Now that we've got mostly basic integrals out of the way let's do some indefinite integrals. In all these problems remember that we can always verify our answer by differentiating and ensuring that we get the integrand.


Related Discussions:- Basic indefinite integrals- computing indefinite integrals

Derive the marshalian demand functions, (a) Derive the Marshalian demand fu...

(a) Derive the Marshalian demand functions for the following utility function: u(x 1 ,x 2 ,x 3 ) = x 1 + δ ln(x 2 )       x 1 ≥ 0, x 2 ≥ 0 Does one need to consider the is

Problem solving, if you start a business and john creates 6 t shirts more t...

if you start a business and john creates 6 t shirts more than pedro and pedro four t shirts less than eva and between the three of then made 22 tshirts, how many t-shirts made each

Formulas of surface area - applications of integrals, Formulas of Surface A...

Formulas of Surface Area - Applications of integrals S = ∫ 2Πyds          rotation about x-axis S = ∫ 2Πxds          rotation about y-axis Where, ds = √ 1 + (1+ (dy /

Precalculus, Find the standard form of the equation of the parabola with a ...

Find the standard form of the equation of the parabola with a vertex at the origin and a focus at (0, -7).

Example of subtraction of fractions, Example of Subtraction of Fractions: ...

Example of Subtraction of Fractions: 1/3 + 1/6 + 1/8 = ____ Using trial & error we could search that 24 is the LCD or smallest number in which 3, 6, and 8 will all divide w

Find the maxima or minima and green theorem, 1) find the maxima and minima ...

1) find the maxima and minima of f(x,y,z) = 2x + y -3z subject to the constraint 2x^2+y^2+2z^2=1 2)compute the work done by the force field F(x,y,z) = x^2I + y j +y k in moving

6th grade, what is the length of a line segment with endpoints (-3,2) and (...

what is the length of a line segment with endpoints (-3,2) and (7,2)?

Find out the x-y coordinates of the points - tangents, Find out the x-y coo...

Find out the x-y coordinates of the points in which the following parametric equations will have horizontal or vertical tangents. x = t 3 - 3t        y = 3t 2 - 9 Solut

Please solve this question, The number of integral pairs (x,y) satisfying t...

The number of integral pairs (x,y) satisfying the equation x^2=y^2+1294 is a)2 b)3 c)4 d)None of these

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd