Basic indefinite integrals- computing indefinite integrals, Mathematics

Assignment Help:

Basic indefinite integrals

The first integral which we'll look at is the integral of a power of x.

                               ∫xn dx = (xn +1 / n + 1)+ c,          n ≠ -1

The general rule while integrating a power of x we add one onto the exponent & then divide through the new exponent. It is clear that we will have to avoid n = -1 in this formula.  If we let n = -1 in this formula we will end up with division by zero.  We will make sure of this case in a bit.

Next is one of the simple integrals however always seems to cause problems for people.

                                      ∫ k dx = kx + c,         c & k are constants

All we're asking is what we differentiated to obtain the integrand it is pretty simple, but it does appear to cause problems on occasion.

Now let's take a look at the trig functions.

∫ sin x dx = - cos x + c              ∫ cos x dx = sin x + c

∫ sec2 x dx = tan x + c                      ∫ sec x tan x dx = sec x + c

∫ csc2 x dx = - cot x + c               ∫ csc x cot x dx = - csc x + c

2479_integeral.png

Notice as well that we just integrated two of the six trig functions here. The remaining four integrals are actually integrals which give the remaining four trig functions.  Also, be careful with signs here.  This is easy to obtain the signs for derivatives & integrals mixed up.  Again, we're asking what function we differentiated to obtain the integrand.

Now, let's take care of exponential & logarithm functions.

∫ex dx = ex + c              ∫a x dx = ( ax    /lna )+  c            ( (1/x) dx = ∫x-1 dx = ln |x |+ c

At last, let's take care of the inverse trig & hyperbolic functions.

(1/(x2+1) dx = tan -1 x + c     

∫ sinh x dx = cosh x + c                                  ∫ cosh x dx = sinh x +c

∫ sech 2 x dx = tanh x + c                              ∫ sech x tanh x dx = - sech x + c

∫ csch 2 x dx = - coth x + c                            ∫ csch x coth x dx = - csch x + c

All we are asking here is what function we differentiated to obtain the integrand the second integral could also be,

251_integrals.png

Usually we utilize the first form of this integral.

Now that we've got mostly basic integrals out of the way let's do some indefinite integrals. In all these problems remember that we can always verify our answer by differentiating and ensuring that we get the integrand.


Related Discussions:- Basic indefinite integrals- computing indefinite integrals

Evaluate negative infinity, Evaluate both of the following limits. ...

Evaluate both of the following limits. Solution : Firstly, the only difference among these two is that one is going to +ve infinity and the other is going to negative inf

Frequency polygon, how to compute the frequncy polygon of the scores?

how to compute the frequncy polygon of the scores?

The quantity x + 6 is divided by negative four find number, Negative four i...

Negative four is multiplied through the quantity x + 8. If 6x is then added to this, the output is 2x + 32. What is the value of x? twice the quantity x + 6 is divided by negative

Numerical integration - simpson rule, (1)Derive, algebraically, the 2nd ord...

(1)Derive, algebraically, the 2nd order (Simpson's Rule) integration formula using 3 equally spaced sample points, f 0 ,f 1 ,f 2 with an increment of h. (2) Using software such

Example of spiral development of the mathematics curriculum?, E1) Can you g...

E1) Can you give some more examples of the spiral development of the mathematics curriculum? E2) A Class 3 child was asked to add 1/4 + 1/5. She wrote 2/9. Why do you feel this

Which of the subsequent represents the cost y of phone call, A telephone co...

A telephone company charges $.35 for the first minute of a phone call and $.15 for each additional minute of the call. Which of the subsequent represents the cost y of a phone call

Calculus, I need an explanation of "the integral, from b to a, of the deriv...

I need an explanation of "the integral, from b to a, of the derivative of f (x). and, the integral from a to b. of the derivative of f(t) dt.

Show that 571 is a prime number, Show that 571 is a prime number. Ans: ...

Show that 571 is a prime number. Ans:    Let x=571⇒√x=√571 Now 571 lies between the perfect squares of  (23)2 and (24)2 Prime numbers less than 24 are 2,3,5,7,11,13,17,1

Find prime implicants, Let E = xy + y't + x'yz' + xy'zt', find (a)   Pri...

Let E = xy + y't + x'yz' + xy'zt', find (a)   Prime implicants of E,  (b)  Minimal sum for E.  Ans:  K -map for following boolean expression is given as: Prime implic

What kinds classroom activities help children to learn maths, What kinds of...

What kinds of classroom activities can you think of for helping children to make groups of 5 and 10? Once they have enough practice with such activities, children can be helped

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd