Basic indefinite integrals- computing indefinite integrals, Mathematics

Assignment Help:

Basic indefinite integrals

The first integral which we'll look at is the integral of a power of x.

                               ∫xn dx = (xn +1 / n + 1)+ c,          n ≠ -1

The general rule while integrating a power of x we add one onto the exponent & then divide through the new exponent. It is clear that we will have to avoid n = -1 in this formula.  If we let n = -1 in this formula we will end up with division by zero.  We will make sure of this case in a bit.

Next is one of the simple integrals however always seems to cause problems for people.

                                      ∫ k dx = kx + c,         c & k are constants

All we're asking is what we differentiated to obtain the integrand it is pretty simple, but it does appear to cause problems on occasion.

Now let's take a look at the trig functions.

∫ sin x dx = - cos x + c              ∫ cos x dx = sin x + c

∫ sec2 x dx = tan x + c                      ∫ sec x tan x dx = sec x + c

∫ csc2 x dx = - cot x + c               ∫ csc x cot x dx = - csc x + c

2479_integeral.png

Notice as well that we just integrated two of the six trig functions here. The remaining four integrals are actually integrals which give the remaining four trig functions.  Also, be careful with signs here.  This is easy to obtain the signs for derivatives & integrals mixed up.  Again, we're asking what function we differentiated to obtain the integrand.

Now, let's take care of exponential & logarithm functions.

∫ex dx = ex + c              ∫a x dx = ( ax    /lna )+  c            ( (1/x) dx = ∫x-1 dx = ln |x |+ c

At last, let's take care of the inverse trig & hyperbolic functions.

(1/(x2+1) dx = tan -1 x + c     

∫ sinh x dx = cosh x + c                                  ∫ cosh x dx = sinh x +c

∫ sech 2 x dx = tanh x + c                              ∫ sech x tanh x dx = - sech x + c

∫ csch 2 x dx = - coth x + c                            ∫ csch x coth x dx = - csch x + c

All we are asking here is what function we differentiated to obtain the integrand the second integral could also be,

251_integrals.png

Usually we utilize the first form of this integral.

Now that we've got mostly basic integrals out of the way let's do some indefinite integrals. In all these problems remember that we can always verify our answer by differentiating and ensuring that we get the integrand.


Related Discussions:- Basic indefinite integrals- computing indefinite integrals

Matrices, (e) Solve the following system of equations by using Matrix meth...

(e) Solve the following system of equations by using Matrix method. 3x + 2y + 2z = 11 x + 4y + 4z = 17 6x + 2y + 6z = 22

Utilize the chain rule to differentiate, Chain Rule : Assume that we have ...

Chain Rule : Assume that we have two functions f(x) & g(x) and they both are differentiable. 1.   If we define F ( x ) = ( f o g ) ( x ) then the derivative of F(x) is,

Differential equations and group methods, solve the differential equation ...

solve the differential equation dy/dx=f(y)x^n+g(y)x^m by finding a one-parameter group leaving it invariant

Invoices and trade discounts, Natureland garden center buys lawn mowers tha...

Natureland garden center buys lawn mowers that list for $679.95 less a 30% discount. What is the dollar amount of the discount?

Some important issue of graph, Some important issue of graph Before mov...

Some important issue of graph Before moving on to the next example, there are some important things to note. Firstly, in almost all problems a graph is pretty much needed.

Example of function, Example  Suppose the demand and cost functio...

Example  Suppose the demand and cost functions are given by          Q = 21 - 0.1P and C = 200 + 10Q Where,          Q - Quantity sold

Wants to Join as expert, Hi.. This is dinesh kumar I just joined experminds...

Hi.. This is dinesh kumar I just joined experminds.com , i wamt to receive assignment in maths and want to complete students assignment within time. Please help me how i can become

Discrete uniform distribution, Discrete Uniform Distribution Acme Limit...

Discrete Uniform Distribution Acme Limited is a car manufacturer. The company can paint the car in 3 possible colors: White, Black and Blue. Until the population is sampled, th

Each child is unique in learning development, Each Child Is Unique :  Alth...

Each Child Is Unique :  Although every child goes through similar stages of development, the process may vary from one set of children to another, and also from one child to anoth

Construct the adjacency matrix and the adjacency lists, Question: Constrcut...

Question: Constrcut the adjacency matrix and the adjacency lists for the graph G below, where the weights associated with edges represent distances between nodes. If no edge is pre

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd