Basic indefinite integrals- computing indefinite integrals, Mathematics

Assignment Help:

Basic indefinite integrals

The first integral which we'll look at is the integral of a power of x.

                               ∫xn dx = (xn +1 / n + 1)+ c,          n ≠ -1

The general rule while integrating a power of x we add one onto the exponent & then divide through the new exponent. It is clear that we will have to avoid n = -1 in this formula.  If we let n = -1 in this formula we will end up with division by zero.  We will make sure of this case in a bit.

Next is one of the simple integrals however always seems to cause problems for people.

                                      ∫ k dx = kx + c,         c & k are constants

All we're asking is what we differentiated to obtain the integrand it is pretty simple, but it does appear to cause problems on occasion.

Now let's take a look at the trig functions.

∫ sin x dx = - cos x + c              ∫ cos x dx = sin x + c

∫ sec2 x dx = tan x + c                      ∫ sec x tan x dx = sec x + c

∫ csc2 x dx = - cot x + c               ∫ csc x cot x dx = - csc x + c

2479_integeral.png

Notice as well that we just integrated two of the six trig functions here. The remaining four integrals are actually integrals which give the remaining four trig functions.  Also, be careful with signs here.  This is easy to obtain the signs for derivatives & integrals mixed up.  Again, we're asking what function we differentiated to obtain the integrand.

Now, let's take care of exponential & logarithm functions.

∫ex dx = ex + c              ∫a x dx = ( ax    /lna )+  c            ( (1/x) dx = ∫x-1 dx = ln |x |+ c

At last, let's take care of the inverse trig & hyperbolic functions.

(1/(x2+1) dx = tan -1 x + c     

∫ sinh x dx = cosh x + c                                  ∫ cosh x dx = sinh x +c

∫ sech 2 x dx = tanh x + c                              ∫ sech x tanh x dx = - sech x + c

∫ csch 2 x dx = - coth x + c                            ∫ csch x coth x dx = - csch x + c

All we are asking here is what function we differentiated to obtain the integrand the second integral could also be,

251_integrals.png

Usually we utilize the first form of this integral.

Now that we've got mostly basic integrals out of the way let's do some indefinite integrals. In all these problems remember that we can always verify our answer by differentiating and ensuring that we get the integrand.


Related Discussions:- Basic indefinite integrals- computing indefinite integrals

Pre-calculus, Give all solutions between o degree and 360 degree for sin x=...

Give all solutions between o degree and 360 degree for sin x=3/2

Fraction, One day it snowed 3 and 3/8 inches in Altoona and 3.45 inches in ...

One day it snowed 3 and 3/8 inches in Altoona and 3.45 inches in Bethlehem. Which city received less snow that day.

Four distinct points on a circle, If (a,1/a), (b,1/b),(c,1/c),(d,1/d) are f...

If (a,1/a), (b,1/b),(c,1/c),(d,1/d) are four distinct points on a circle of radius 4 units then,abcd is equal to??   Ans) As they are of form (x,1/x) let eq of circle be x

Marketing research, In pharmaceutical product research doctors visit the pl...

In pharmaceutical product research doctors visit the place to learn what

What was the planes average speed, A ?ight from Pittsburgh to Los Angeles t...

A ?ight from Pittsburgh to Los Angeles took 5 hours and covered 3,060 miles. What was the plane's average speed? Find out the rate at that Susan is traveling through dividing h

Trigonometric ratios, to difine trigonometric ratios of an angle,is it nece...

to difine trigonometric ratios of an angle,is it necessary that the initial ray of the angle must be positive x-axis?

Numerical methods for ordinary differential equationsordinay, #k1=f(Tn, Xn)...

#k1=f(Tn, Xn), k2=f (Tn + H.Y,Xn + H.Y.k1) Xn+1=Xn + H(a.k1+ b.k2) Find a relation between Y,a and b so that the method is second order consistent.

How many feet is the width of the deck, A pool is surrounded through a deck...

A pool is surrounded through a deck that has the similar width all the way around. The total area of the deck only is 400 square feet. The dimensions of the pool are 18 feet throug

Online tutoring, how can i find the online students ?

how can i find the online students ?

Example on discrete mathematics, Suppose that at some future time every tel...

Suppose that at some future time every telephone in the world is assigned a number that contains a country code, 1 to 3 digits long, that is, of the form X, XX , XXX or followed

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd