Basic indefinite integrals- computing indefinite integrals, Mathematics

Assignment Help:

Basic indefinite integrals

The first integral which we'll look at is the integral of a power of x.

                               ∫xn dx = (xn +1 / n + 1)+ c,          n ≠ -1

The general rule while integrating a power of x we add one onto the exponent & then divide through the new exponent. It is clear that we will have to avoid n = -1 in this formula.  If we let n = -1 in this formula we will end up with division by zero.  We will make sure of this case in a bit.

Next is one of the simple integrals however always seems to cause problems for people.

                                      ∫ k dx = kx + c,         c & k are constants

All we're asking is what we differentiated to obtain the integrand it is pretty simple, but it does appear to cause problems on occasion.

Now let's take a look at the trig functions.

∫ sin x dx = - cos x + c              ∫ cos x dx = sin x + c

∫ sec2 x dx = tan x + c                      ∫ sec x tan x dx = sec x + c

∫ csc2 x dx = - cot x + c               ∫ csc x cot x dx = - csc x + c

2479_integeral.png

Notice as well that we just integrated two of the six trig functions here. The remaining four integrals are actually integrals which give the remaining four trig functions.  Also, be careful with signs here.  This is easy to obtain the signs for derivatives & integrals mixed up.  Again, we're asking what function we differentiated to obtain the integrand.

Now, let's take care of exponential & logarithm functions.

∫ex dx = ex + c              ∫a x dx = ( ax    /lna )+  c            ( (1/x) dx = ∫x-1 dx = ln |x |+ c

At last, let's take care of the inverse trig & hyperbolic functions.

(1/(x2+1) dx = tan -1 x + c     

∫ sinh x dx = cosh x + c                                  ∫ cosh x dx = sinh x +c

∫ sech 2 x dx = tanh x + c                              ∫ sech x tanh x dx = - sech x + c

∫ csch 2 x dx = - coth x + c                            ∫ csch x coth x dx = - csch x + c

All we are asking here is what function we differentiated to obtain the integrand the second integral could also be,

251_integrals.png

Usually we utilize the first form of this integral.

Now that we've got mostly basic integrals out of the way let's do some indefinite integrals. In all these problems remember that we can always verify our answer by differentiating and ensuring that we get the integrand.


Related Discussions:- Basic indefinite integrals- computing indefinite integrals

Expressions, how do you solve expressions

how do you solve expressions

Find the number of ways to arrange words, Q. Find the number of ways three ...

Q. Find the number of ways three letter "words" can be chosen from the alphabet if none of the letters can be repeated? Solution:  There are 26 ways of choosing the first lett

NUMERABILITY, AFIGURE THIS OUT(3) (14) (17) (20) (25)= 8 WHAT ARE THE PROC...

AFIGURE THIS OUT(3) (14) (17) (20) (25)= 8 WHAT ARE THE PROCEDURES (-)(+)(x)(div) BETWEEN EACH NUMBER TO COME UP WITH 8 ?sk question #Minimum 100 words accepted#

Decmals, just want to go over it

just want to go over it

Formulas of surface area - applications of integrals, Formulas of Surface A...

Formulas of Surface Area - Applications of integrals S = ∫ 2Πyds          rotation about x-axis S = ∫ 2Πxds          rotation about y-axis Where, ds = √ 1 + (1+ (dy /

Numeros naturales., Averigua que nùmero de cinco cifras se esconde detras d...

Averigua que nùmero de cinco cifras se esconde detras de las pistas dadas La cifra de las unidades es par, mayor que 6 y coincide con las decenas de mil. La cifra de las decenas se

Real analysis, Let {An} be sequence of real numbers. Define a set S by: S={...

Let {An} be sequence of real numbers. Define a set S by: S={i ? N : for all j > i, ai

Calculus, what is the derivatives of y=u/5+7 and u=5x-35 using the chain ru...

what is the derivatives of y=u/5+7 and u=5x-35 using the chain rule?

Explain the decimal system in detail, Explain The Decimal System in detail?...

Explain The Decimal System in detail? A decimal, such as 1.23, is made up of two parts: a whole number and a decimal fraction. In 1.23, the whole number is 1 and the decimal fr

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd