Basic indefinite integrals- computing indefinite integrals, Mathematics

Assignment Help:

Basic indefinite integrals

The first integral which we'll look at is the integral of a power of x.

                               ∫xn dx = (xn +1 / n + 1)+ c,          n ≠ -1

The general rule while integrating a power of x we add one onto the exponent & then divide through the new exponent. It is clear that we will have to avoid n = -1 in this formula.  If we let n = -1 in this formula we will end up with division by zero.  We will make sure of this case in a bit.

Next is one of the simple integrals however always seems to cause problems for people.

                                      ∫ k dx = kx + c,         c & k are constants

All we're asking is what we differentiated to obtain the integrand it is pretty simple, but it does appear to cause problems on occasion.

Now let's take a look at the trig functions.

∫ sin x dx = - cos x + c              ∫ cos x dx = sin x + c

∫ sec2 x dx = tan x + c                      ∫ sec x tan x dx = sec x + c

∫ csc2 x dx = - cot x + c               ∫ csc x cot x dx = - csc x + c

2479_integeral.png

Notice as well that we just integrated two of the six trig functions here. The remaining four integrals are actually integrals which give the remaining four trig functions.  Also, be careful with signs here.  This is easy to obtain the signs for derivatives & integrals mixed up.  Again, we're asking what function we differentiated to obtain the integrand.

Now, let's take care of exponential & logarithm functions.

∫ex dx = ex + c              ∫a x dx = ( ax    /lna )+  c            ( (1/x) dx = ∫x-1 dx = ln |x |+ c

At last, let's take care of the inverse trig & hyperbolic functions.

(1/(x2+1) dx = tan -1 x + c     

∫ sinh x dx = cosh x + c                                  ∫ cosh x dx = sinh x +c

∫ sech 2 x dx = tanh x + c                              ∫ sech x tanh x dx = - sech x + c

∫ csch 2 x dx = - coth x + c                            ∫ csch x coth x dx = - csch x + c

All we are asking here is what function we differentiated to obtain the integrand the second integral could also be,

251_integrals.png

Usually we utilize the first form of this integral.

Now that we've got mostly basic integrals out of the way let's do some indefinite integrals. In all these problems remember that we can always verify our answer by differentiating and ensuring that we get the integrand.


Related Discussions:- Basic indefinite integrals- computing indefinite integrals

Geometry, what shapes can go into a triangular prism

what shapes can go into a triangular prism

Statistic, The mean height of eight children is 136cm. if the height of sev...

The mean height of eight children is 136cm. if the height of seven children are 143,125,133,140,120,135 and 152,find the height of eighth student.

#title.algebra., how do i understand algebra? whats the formula i just dont...

how do i understand algebra? whats the formula i just dont get it

Polynomials, give an example of a binomial of degree 27?

give an example of a binomial of degree 27?

What is the value of x in probability , A bag contains 8 red balls and x bl...

A bag contains 8 red balls and x blue balls, the odd against drawing a blue ball are 2: 5. What is the value of x?                                                               (An

What is terminology of quadratic functions, What is Terminology of Quadrati...

What is Terminology of Quadratic Functions ? The function in x given by: F(x) = ax 2 + bx + c, where a 0 is called a quadratic function. The graph of a quadratic function is

SHOPPERS`STOP, 3. How are Indian customers visiting Shoppers’ Stop any diff...

3. How are Indian customers visiting Shoppers’ Stop any different from customers of developed western countries? 4. How should Shoppers’ Stop develop its demand forecasts?

Numerical methods, Consider the following interpolation problem: Find a q...

Consider the following interpolation problem: Find a quadratic polynomial p(x) such that p(x0) = y0 p’(x1) = y’1 , p(x2) = y2 where x0 is different from x2 and y0, y’1 , y2 a

College Algebra, Find the center and radius of the circle whose equation is...

Find the center and radius of the circle whose equation is 3 x^2 - 8 x+ 3 y^2+ 4 y+ 2 = 0

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd