Basic indefinite integrals- computing indefinite integrals, Mathematics

Assignment Help:

Basic indefinite integrals

The first integral which we'll look at is the integral of a power of x.

                               ∫xn dx = (xn +1 / n + 1)+ c,          n ≠ -1

The general rule while integrating a power of x we add one onto the exponent & then divide through the new exponent. It is clear that we will have to avoid n = -1 in this formula.  If we let n = -1 in this formula we will end up with division by zero.  We will make sure of this case in a bit.

Next is one of the simple integrals however always seems to cause problems for people.

                                      ∫ k dx = kx + c,         c & k are constants

All we're asking is what we differentiated to obtain the integrand it is pretty simple, but it does appear to cause problems on occasion.

Now let's take a look at the trig functions.

∫ sin x dx = - cos x + c              ∫ cos x dx = sin x + c

∫ sec2 x dx = tan x + c                      ∫ sec x tan x dx = sec x + c

∫ csc2 x dx = - cot x + c               ∫ csc x cot x dx = - csc x + c

2479_integeral.png

Notice as well that we just integrated two of the six trig functions here. The remaining four integrals are actually integrals which give the remaining four trig functions.  Also, be careful with signs here.  This is easy to obtain the signs for derivatives & integrals mixed up.  Again, we're asking what function we differentiated to obtain the integrand.

Now, let's take care of exponential & logarithm functions.

∫ex dx = ex + c              ∫a x dx = ( ax    /lna )+  c            ( (1/x) dx = ∫x-1 dx = ln |x |+ c

At last, let's take care of the inverse trig & hyperbolic functions.

(1/(x2+1) dx = tan -1 x + c     

∫ sinh x dx = cosh x + c                                  ∫ cosh x dx = sinh x +c

∫ sech 2 x dx = tanh x + c                              ∫ sech x tanh x dx = - sech x + c

∫ csch 2 x dx = - coth x + c                            ∫ csch x coth x dx = - csch x + c

All we are asking here is what function we differentiated to obtain the integrand the second integral could also be,

251_integrals.png

Usually we utilize the first form of this integral.

Now that we've got mostly basic integrals out of the way let's do some indefinite integrals. In all these problems remember that we can always verify our answer by differentiating and ensuring that we get the integrand.


Related Discussions:- Basic indefinite integrals- computing indefinite integrals

Tests for an ideal index number, Tests for an Ideal Index Number 1. F...

Tests for an Ideal Index Number 1. Factor Reversal Test Factor Reversal Test indicates that when the price index is multiplied along with a quantity index that is factors

Fractions, How do you add 7/9 + 6/8 + 3/4

How do you add 7/9 + 6/8 + 3/4

PROBLEM SOLVING, The perimeter of a rectangular swimming pool is 60m. The l...

The perimeter of a rectangular swimming pool is 60m. The length of the pool is 4 m more than the width. What is the width of the pool?

Stuck on this, I need help on radical notation for a homework assignment I'...

I need help on radical notation for a homework assignment I''m really confused on it. Can I get help?

Iit-jee questions, can u tell me a website for iit-jee questions?

can u tell me a website for iit-jee questions?

Functions, find the derived functions

find the derived functions

Find relative extrema f ( x ) = x2 on [-2, Recognizes the absolute extrema...

Recognizes the absolute extrema & relative extrema for the given function.  f ( x ) = x 2        on                  [-2, 2] Solution Following is the graph for this fun

Simplifying rational expressions, I need to simple this rational expression...

I need to simple this rational expression, but I can''t figure out how. (x+1)/(x^2-2x-35)+(x^2+x-12)/(x^2-2x-24)(x^2-4x-12)/(x^2+2x-15)

Determine the centralizer and the order of the conjugacy, Determine the cen...

Determine the centralizer and the order of the conjugacy: 1)      Determine the centralizer and the order of the conjugacy class of the matrix [1, 1; 0, 1] in Gl­ 2 (F 3 ).

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd