Basic indefinite integrals- computing indefinite integrals, Mathematics

Assignment Help:

Basic indefinite integrals

The first integral which we'll look at is the integral of a power of x.

                               ∫xn dx = (xn +1 / n + 1)+ c,          n ≠ -1

The general rule while integrating a power of x we add one onto the exponent & then divide through the new exponent. It is clear that we will have to avoid n = -1 in this formula.  If we let n = -1 in this formula we will end up with division by zero.  We will make sure of this case in a bit.

Next is one of the simple integrals however always seems to cause problems for people.

                                      ∫ k dx = kx + c,         c & k are constants

All we're asking is what we differentiated to obtain the integrand it is pretty simple, but it does appear to cause problems on occasion.

Now let's take a look at the trig functions.

∫ sin x dx = - cos x + c              ∫ cos x dx = sin x + c

∫ sec2 x dx = tan x + c                      ∫ sec x tan x dx = sec x + c

∫ csc2 x dx = - cot x + c               ∫ csc x cot x dx = - csc x + c

2479_integeral.png

Notice as well that we just integrated two of the six trig functions here. The remaining four integrals are actually integrals which give the remaining four trig functions.  Also, be careful with signs here.  This is easy to obtain the signs for derivatives & integrals mixed up.  Again, we're asking what function we differentiated to obtain the integrand.

Now, let's take care of exponential & logarithm functions.

∫ex dx = ex + c              ∫a x dx = ( ax    /lna )+  c            ( (1/x) dx = ∫x-1 dx = ln |x |+ c

At last, let's take care of the inverse trig & hyperbolic functions.

(1/(x2+1) dx = tan -1 x + c     

∫ sinh x dx = cosh x + c                                  ∫ cosh x dx = sinh x +c

∫ sech 2 x dx = tanh x + c                              ∫ sech x tanh x dx = - sech x + c

∫ csch 2 x dx = - coth x + c                            ∫ csch x coth x dx = - csch x + c

All we are asking here is what function we differentiated to obtain the integrand the second integral could also be,

251_integrals.png

Usually we utilize the first form of this integral.

Now that we've got mostly basic integrals out of the way let's do some indefinite integrals. In all these problems remember that we can always verify our answer by differentiating and ensuring that we get the integrand.


Related Discussions:- Basic indefinite integrals- computing indefinite integrals

Relative frequency definition, Relative Frequency  This type of probab...

Relative Frequency  This type of probability requires us to make some qualifications. We define probability of event A, occurring as the proportion of times A occurs, if we re

Aggregation and augmentation, Previously discussed how important it is to e...

Previously discussed how important it is to expose children to a variety of verbal problems involving the concept that they are trying to learn. Children attach meaning to the abst

Develop a linear algebraic equation, Introduction: "Mathematical liter...

Introduction: "Mathematical literacy is an individual's capacity to identify and understand the role that mathematics plays in the world, to make well-founded judgments, and t

What fraction of water flows out, A conical vessel of radius 6cm and height...

A conical vessel of radius 6cm and height 8cm is completely filled with water. A sphere is lowered into the water and its size is such that when it touches the sides, it is just im

Solve the form x2 + bx - c, Solve the form x 2 + bx - c ? This tutori...

Solve the form x 2 + bx - c ? This tutorial will help you factor quadratics that look something like this: x 2 + 11x - 12 (No lead coefficient; positive middle coeffic

Shares and dividends, suresh invested rs.1080 in shares of face value rs.50...

suresh invested rs.1080 in shares of face value rs.50 at rs.54.After receiving dividend on them at 8% he sold them at 52.In each of the transaction he paid 2 % brokerage.Hpw much d

Static or dynamic, Consider a discrete-time system that is characterized by...

Consider a discrete-time system that is characterized by the following difference equation: Y(n) = x(n)cos? 0 n, where ? 0  is constant value, x(n)are the discrete-time input

Alcohol solution (mixture), Nora works at a laboratory as a chemist . she w...

Nora works at a laboratory as a chemist . she was told to prepare 100L of 25% alcohol solution. she has on hand of a 15% percent alcohol solution and a 40% alcohol solution which s

Real Analysis/Advanced Calculus (Needs to be a full proof), Both need to be...

Both need to be a full page, detailed proof. Not just a few lines of proof. (1) “Every convergent sequence contains either an increasing, or a decreasing subsequence (or possibly

Differential equations, Find the normalized differential equation which has...

Find the normalized differential equation which has {x, xex} as its fundamental set

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd