Basic indefinite integrals- computing indefinite integrals, Mathematics

Assignment Help:

Basic indefinite integrals

The first integral which we'll look at is the integral of a power of x.

                               ∫xn dx = (xn +1 / n + 1)+ c,          n ≠ -1

The general rule while integrating a power of x we add one onto the exponent & then divide through the new exponent. It is clear that we will have to avoid n = -1 in this formula.  If we let n = -1 in this formula we will end up with division by zero.  We will make sure of this case in a bit.

Next is one of the simple integrals however always seems to cause problems for people.

                                      ∫ k dx = kx + c,         c & k are constants

All we're asking is what we differentiated to obtain the integrand it is pretty simple, but it does appear to cause problems on occasion.

Now let's take a look at the trig functions.

∫ sin x dx = - cos x + c              ∫ cos x dx = sin x + c

∫ sec2 x dx = tan x + c                      ∫ sec x tan x dx = sec x + c

∫ csc2 x dx = - cot x + c               ∫ csc x cot x dx = - csc x + c

2479_integeral.png

Notice as well that we just integrated two of the six trig functions here. The remaining four integrals are actually integrals which give the remaining four trig functions.  Also, be careful with signs here.  This is easy to obtain the signs for derivatives & integrals mixed up.  Again, we're asking what function we differentiated to obtain the integrand.

Now, let's take care of exponential & logarithm functions.

∫ex dx = ex + c              ∫a x dx = ( ax    /lna )+  c            ( (1/x) dx = ∫x-1 dx = ln |x |+ c

At last, let's take care of the inverse trig & hyperbolic functions.

(1/(x2+1) dx = tan -1 x + c     

∫ sinh x dx = cosh x + c                                  ∫ cosh x dx = sinh x +c

∫ sech 2 x dx = tanh x + c                              ∫ sech x tanh x dx = - sech x + c

∫ csch 2 x dx = - coth x + c                            ∫ csch x coth x dx = - csch x + c

All we are asking here is what function we differentiated to obtain the integrand the second integral could also be,

251_integrals.png

Usually we utilize the first form of this integral.

Now that we've got mostly basic integrals out of the way let's do some indefinite integrals. In all these problems remember that we can always verify our answer by differentiating and ensuring that we get the integrand.


Related Discussions:- Basic indefinite integrals- computing indefinite integrals

Formula to estimate distance around circle table, If Lisa wants to know the...

If Lisa wants to know the distance around her circular table, that has a diameter of 42 in, which formula will she use? The circumference or distance around a circle is π times

Word problems, Ana has hiked 4 1/2 miles. She is 2/3 of the way along the t...

Ana has hiked 4 1/2 miles. She is 2/3 of the way along the trail. How long is the trail?

Explain id amortisation is proper impairment will not arise, If depreciatio...

If depreciation/amortisation is done properly, impairment adjustments will not arise.   Required: Do you agree with the above statement? Critically and fully explain your

Illustration of integration by parts - integration technique, Example of In...

Example of Integration by Parts - Integration techniques Some problems could need us to do integration by parts many times and there is a short hand technique that will permit

What is the probability that the product xy less than 9, A number x is ...

A number x is selected from the numbers 1,2,3 and then a second number y is randomly selected  from  the  numbers  1,4,9. What  is  the  probability that  the product xy of the two

Actual implicit solution, y 2 = t 2 - 3 is the actual implicit solution t...

y 2 = t 2 - 3 is the actual implicit solution to y'= t/y, y(2) = -1. At such point I will ask that you trust me that it is actually a solution to the differential equation. You w

Pre-calculus, Give all solutions between o degree and 360 degree for sin x=...

Give all solutions between o degree and 360 degree for sin x=3/2

Estimate the cost of the car, Kyra receives a 5% commission on every car sh...

Kyra receives a 5% commission on every car she sells. She received a $1,325 commission on the last car she sold. What was the cost of the car? Use the proportion part/whole =

501, Ask queThe low temperature in Anchorage, Alaska today was -4°F. The lo...

Ask queThe low temperature in Anchorage, Alaska today was -4°F. The low temperature in Los Angeles, California was 63°F. What is the difference in the two low temperatures?stion #M

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd