Basic indefinite integrals- computing indefinite integrals, Mathematics

Assignment Help:

Basic indefinite integrals

The first integral which we'll look at is the integral of a power of x.

                               ∫xn dx = (xn +1 / n + 1)+ c,          n ≠ -1

The general rule while integrating a power of x we add one onto the exponent & then divide through the new exponent. It is clear that we will have to avoid n = -1 in this formula.  If we let n = -1 in this formula we will end up with division by zero.  We will make sure of this case in a bit.

Next is one of the simple integrals however always seems to cause problems for people.

                                      ∫ k dx = kx + c,         c & k are constants

All we're asking is what we differentiated to obtain the integrand it is pretty simple, but it does appear to cause problems on occasion.

Now let's take a look at the trig functions.

∫ sin x dx = - cos x + c              ∫ cos x dx = sin x + c

∫ sec2 x dx = tan x + c                      ∫ sec x tan x dx = sec x + c

∫ csc2 x dx = - cot x + c               ∫ csc x cot x dx = - csc x + c

2479_integeral.png

Notice as well that we just integrated two of the six trig functions here. The remaining four integrals are actually integrals which give the remaining four trig functions.  Also, be careful with signs here.  This is easy to obtain the signs for derivatives & integrals mixed up.  Again, we're asking what function we differentiated to obtain the integrand.

Now, let's take care of exponential & logarithm functions.

∫ex dx = ex + c              ∫a x dx = ( ax    /lna )+  c            ( (1/x) dx = ∫x-1 dx = ln |x |+ c

At last, let's take care of the inverse trig & hyperbolic functions.

(1/(x2+1) dx = tan -1 x + c     

∫ sinh x dx = cosh x + c                                  ∫ cosh x dx = sinh x +c

∫ sech 2 x dx = tanh x + c                              ∫ sech x tanh x dx = - sech x + c

∫ csch 2 x dx = - coth x + c                            ∫ csch x coth x dx = - csch x + c

All we are asking here is what function we differentiated to obtain the integrand the second integral could also be,

251_integrals.png

Usually we utilize the first form of this integral.

Now that we've got mostly basic integrals out of the way let's do some indefinite integrals. In all these problems remember that we can always verify our answer by differentiating and ensuring that we get the integrand.


Related Discussions:- Basic indefinite integrals- computing indefinite integrals

3-d geometry, Q) In 3D-geometry give + and - signs for x,y,z, in all eight ...

Q) In 3D-geometry give + and - signs for x,y,z, in all eight octants Ans) There is no specific hard rule for numbering the octants. So, it makes no real sense to ask which octan

Binimial, theory behind the greatest term in the binomial expansion

theory behind the greatest term in the binomial expansion

Evaluate the mean of temperatures, Evaluate the mean of temperatures: ...

Evaluate the mean of temperatures: Example: Given the subsequent temperature readings, 573, 573, 574, 574, 574, 574, 575, 575, 575, 575, 575, 576, 576, 576, 578 So

How much money does she have left, Mary has $2 in her pocket. She does yard...

Mary has $2 in her pocket. She does yard work for four various neighbors and earns $3 per yard. She then spends $2 on a soda. How much money does she have left? This translates

Wave through the origin always has a slope of one or not, Can you explain t...

Can you explain that a wave through the origin always has a slope of one or not?

Estimate percent of the babies born among 6 and 8.5 pounds, 25% of babies b...

25% of babies born at Yale New Haven Hospital weigh less than 6 pounds and 78% weigh less than 8.5 pounds. What percent of the babies born at Yale New Haven Hospital weigh among 6

Rates, we dont know how to do rates

we dont know how to do rates

Please solve this question, The number of integral pairs (x,y) satisfying t...

The number of integral pairs (x,y) satisfying the equation x^2=y^2+1294 is a)2 b)3 c)4 d)None of these

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd