Basic electromagnetic principles, Electrical Engineering

Assignment Help:


It has been known for a thousand years or more (originating in China) that certain (magnetic) materials would always orientate    themselves in a  particular direction if suspended to rotate freely. The very earliest experiments in magnetism were done with these materials (permanent magnets)  and  these  clearly  showed  that two pieces of these materials were able to exert some force at a distance. This force is analogous to gravitational force. We know from our own experience that it exists. Physicists theorise on the causes whilst engineers are more concerned with being able to measure the practical effect and put it to use by devising a suitable method of analysis.

Very early experiments by Oersted and Ampere showed that a current carrying conductor also had an effect on magnetic material    in    its  vicinity.   Magnetic compasses   placed    near    to    a    current carrying conductor were deflected. He also found that the direction of deflection depended on the position relative to the wire. Those above the wire were deflected in the opposite direction to  those placed below. Ampere quantified the strength of this force in terms of the current and the distance involved.
 

In    order  to  be    able   to  relate   these observations to analysis, the concept of a magnetic field was introduced.The presence of a magnetic field may be visualised  by  drawing   imaginary continuous  lines  of    'magnetic  flux',  the density of which is a measure of the strength of the field  in a given material. Arrows are added to the flux lines to indicate the direction of the magnetic field, from which the  direction  of the  force  it produces on, for example, compass needles and current carrying conductors can be deduced. Convention has it that the magnetic field strength is denoted by the symbol H  (ampere.turns),  whilst magnetic  flux density  is  given  the symbol B (Webers/m2).


Related Discussions:- Basic electromagnetic principles

Working of a linear variable differential transformer, Illustrate the const...

Illustrate the construction and principle of working of a linear variable differential transformer. Describe how the magnitude and direction of displacement of core of LVDT is dete

Define hrq, Define HRQ? The hold demand output requests the access of t...

Define HRQ? The hold demand output requests the access of the system bus. In non- cascaded 8257 systems, this is linked with HOLD pin of CPU. In cascade mode, this pin of a sla

What is the maximum speedup, Question: (a) Explain the following metric...

Question: (a) Explain the following metrics: (i) Throughput (ii) Latency (iii) IPC (b) Of the three factors in the equation (EXCPU = Number of instructions × CPI × cy

Covert analog signal into digital signal, Covert Analog Signal into Digital...

Covert Analog Signal into Digital Signal A strain gauge is used in Wheatstone Bridge configuration. The output from the Wheatstone Bridge varies from zero to a maximum strain

Linear system to a unit-step excitation, Q. The response v(t) of a linear s...

Q. The response v(t) of a linear system to a unit-step excitation i(t) is given by v(t) = (5 - 3e -t + 2e -2t ) u(t). Determine the transfer function H(s) = V (s)/I (s).

Averaged power dissipated in the load, (a) Consider the following transmiss...

(a) Consider the following transmission line with the reactance X1 placed across the input. It is being driven with a frequency ω such that the length of the line is λ/4. W

Determine variation of large scale integration chips, Large scale integrati...

Large scale integration chips have between (A) Less than 10 components.         (B) 10 and 100 components. (C) 100 and 1000 components.       (D)  More than 1000 componen

Gate terminal - field-effect transistor, Gate terminal - field-effect trans...

Gate terminal - field-effect transistor: The names of the terminals consider to their functions. The gate terminal might be thought of since controlling the opening and closin

Evaluate complex power in power system, Q. Evaluate complex power in power ...

Q. Evaluate complex power in power system? The complex power ¯S in a single-phase systemis the complex sum of the real (P) and reactive (Q) power, expressed as follows:

Find out form factor and peak factor, Find out Form factor and Peak factor:...

Find out Form factor and Peak factor: For the output of full wave rectifier, find out (a) RMS value, (b) Average value, (c) Form factor, and (d) Peak factor. S

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd