Basic concepts of second order differential equations, Mathematics

Assignment Help:

In this section we will be looking exclusively at linear second order differential equations. The most common linear second order differential equation is in the type.

 p (t ) y′′ + q (t) y′ + r (t ) y = g (t )  ....... (1)

Actually, we will hardly ever look at non-constant coefficient linear second order differential equations. In the section where we suppose constant coefficients we will use the subsequent differential equation.

 ay′′ + by′ + cy+= g (t )   .... (2)

 Where, probably we will utilize (1) only to make the point that specific facts, theorems, properties, or/and techniques can be used along with the non-constant form. Though, most of the time we will be using (2) as this can be fairly not easy to solve second order non-constant coefficient differential equations.

Firstly we will make our life easier through looking at differential equations along with g(t) = 0. As g(t) = 0 we call the differential equation homogeneous and as g (t ) ≠ 0 we call the differential equation non-homogeneous.

Therefore, let's start thinking about how to go regarding solving a constant homogeneous, coefficient, linear, second order differential equation. Now there is the general constant linear, coefficient, second order differential equation or homogeneous equation.

ay′′ + by′ + cy = 0

It's almost certainly best to start off with an illustration. This illustration will guide us to a very significant fact that we will use in every problem by this point on. The illustration will also provide us clues into how to go regarding to solving these in general.


Related Discussions:- Basic concepts of second order differential equations

Compute the essential matrix and epipolar lines , 1. In Figure there are th...

1. In Figure there are three cameras where the distance between the cameras is B, and all three cameras have the same focal length f. The disparity dL = x0 - xL, while the disparit

Multiplication of two complex numbers, Multiply the given below and write t...

Multiply the given below and write the answer in standard form. (2 - √-100 )(1 + √-36 ) Solution If we have to multiply this out in its present form we would get,  (2 -

Fundamentals of math, When there are 4 dots how many chords are they

When there are 4 dots how many chords are they

Online tutoring, how can i find the online students ?

how can i find the online students ?

Algegra, what''s the main purpose of algebra in our daily life

what''s the main purpose of algebra in our daily life

Natural numbers, To begin with we have counting numbers. These ...

To begin with we have counting numbers. These numbers are also known as natural numbers and are denoted by a symbol 'N'. These numbers are obtai

Explain similar figures in similarity, Explain Similar Figures in similarit...

Explain Similar Figures in similarity ? Similar figures are figures that have the same shape but not necessarily the same size, so the image of a figure is similar to the orig

Definition and theorem of derivation, Definition : A function f ( x ) is c...

Definition : A function f ( x ) is called differentiable at x = a if f ′ ( x ) exists & f ( x ) is called differentiable onto an interval if the derivative present for each of the

Applications of series - estimating the value of a series, Estimating the V...

Estimating the Value of a Series One more application of series is not actually an application of infinite series.  It's much more an application of partial sums.  Actually, we

Minimizing the sum of two distances, The value of y that minimizes the sum ...

The value of y that minimizes the sum of the two distances from (3,5) to (1,y) and from (1,y) to (4,9) can be written as a/b where a and b are coprime positive integers. Find a+b.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd