Basic concepts of second order differential equations, Mathematics

Assignment Help:

In this section we will be looking exclusively at linear second order differential equations. The most common linear second order differential equation is in the type.

 p (t ) y′′ + q (t) y′ + r (t ) y = g (t )  ....... (1)

Actually, we will hardly ever look at non-constant coefficient linear second order differential equations. In the section where we suppose constant coefficients we will use the subsequent differential equation.

 ay′′ + by′ + cy+= g (t )   .... (2)

 Where, probably we will utilize (1) only to make the point that specific facts, theorems, properties, or/and techniques can be used along with the non-constant form. Though, most of the time we will be using (2) as this can be fairly not easy to solve second order non-constant coefficient differential equations.

Firstly we will make our life easier through looking at differential equations along with g(t) = 0. As g(t) = 0 we call the differential equation homogeneous and as g (t ) ≠ 0 we call the differential equation non-homogeneous.

Therefore, let's start thinking about how to go regarding solving a constant homogeneous, coefficient, linear, second order differential equation. Now there is the general constant linear, coefficient, second order differential equation or homogeneous equation.

ay′′ + by′ + cy = 0

It's almost certainly best to start off with an illustration. This illustration will guide us to a very significant fact that we will use in every problem by this point on. The illustration will also provide us clues into how to go regarding to solving these in general.


Related Discussions:- Basic concepts of second order differential equations

Variation and proportion, i am not getting what miss has taught us please w...

i am not getting what miss has taught us please will you will help me in my studies

Pair of straight line, show that one of the straight lines given by ax2+2hx...

show that one of the straight lines given by ax2+2hxy+by2=o bisect an angle between the co ordinate axes, if (a+b)2=4h2

SURFACE AREA AND VOLUMES, Metallic spheres of radii 6 centimetre, 8 centime...

Metallic spheres of radii 6 centimetre, 8 centimetre and 10 centimetres respectively are melted to form a single solid sphere. Find the radius of the resulting sphere.

What is the surface area of a ball with a diameter of 6 inch, The formula f...

The formula for the surface area of a sphere is 4πr 2 . What is the surface area of a ball with a diameter of 6 inches? Round to the nearest inch. (π = 3.14) If the diameter  o

Find out general formula for tangent vector and unit vector, Find out the g...

Find out the general formula for the tangent vector and unit tangent vector to the curve specified by r → (t) = t 2 i → + 2 sin t j → + 2 cos t k → . Solution First,

Approximating definite integrals - integration techniques, Approximating De...

Approximating Definite Integrals - Integration Techniques In this section we have spent quite a bit of time on computing the values of integrals. Though, not all integrals can

2 step equations, What is a two step equation that equals 8 ?

What is a two step equation that equals 8 ?

Estimate the total cost of the books, Frederick bought six books which cost...

Frederick bought six books which cost d dollars each. What is the total cost of the books? Frederick would multiply the number of books, 6, through how much each one costs, d.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd