Basic concepts of second order differential equations, Mathematics

Assignment Help:

In this section we will be looking exclusively at linear second order differential equations. The most common linear second order differential equation is in the type.

 p (t ) y′′ + q (t) y′ + r (t ) y = g (t )  ....... (1)

Actually, we will hardly ever look at non-constant coefficient linear second order differential equations. In the section where we suppose constant coefficients we will use the subsequent differential equation.

 ay′′ + by′ + cy+= g (t )   .... (2)

 Where, probably we will utilize (1) only to make the point that specific facts, theorems, properties, or/and techniques can be used along with the non-constant form. Though, most of the time we will be using (2) as this can be fairly not easy to solve second order non-constant coefficient differential equations.

Firstly we will make our life easier through looking at differential equations along with g(t) = 0. As g(t) = 0 we call the differential equation homogeneous and as g (t ) ≠ 0 we call the differential equation non-homogeneous.

Therefore, let's start thinking about how to go regarding solving a constant homogeneous, coefficient, linear, second order differential equation. Now there is the general constant linear, coefficient, second order differential equation or homogeneous equation.

ay′′ + by′ + cy = 0

It's almost certainly best to start off with an illustration. This illustration will guide us to a very significant fact that we will use in every problem by this point on. The illustration will also provide us clues into how to go regarding to solving these in general.


Related Discussions:- Basic concepts of second order differential equations

Help, question..A Circular rug is 6 yards in diameter. Binding for the edge...

question..A Circular rug is 6 yards in diameter. Binding for the edge of the rug cost $2.00 per yard . what eill it cost to bind the rug

Evaluating a function, Evaluating a Function You evaluate a function by...

Evaluating a Function You evaluate a function by "plugging in a number". For example, to evaluate the function f(x) = 3x 2 + x -5 at x = 10, you plug in a 10 everywhere you

Shares and dividend, want to make an assignment on shares and dividend for ...

want to make an assignment on shares and dividend for class 10

Percentage, of all those survey 390 were under 18 years of age if 20%were 1...

of all those survey 390 were under 18 years of age if 20%were 18, how many responded to the survey

Find the least and greatest number of coins, Marc goes to the store with ex...

Marc goes to the store with exactly $1 in change. He has at least one of each coin less than a half-dollar coin, but he does not have a half-dollar coin. a. What is the least nu

Financial Math, can you help me with financial math??

can you help me with financial math??

Find out a particular solution to equation, Example: Find out a particular...

Example: Find out a particular solution to y'' - 4y' - 12 y = 3e 5t Solution The point here is to get a particular solution, though the first thing that we're going to

Equilibrium solutions, In the earlier section we modeled a population depen...

In the earlier section we modeled a population depends on the assumption that the growth rate would be a constant. Though, in reality it doesn't make much sense. Obviously a popula

Differentiate inside function in chain rule, Differentiate following. f ...

Differentiate following. f ( x ) = sin (3x 2   + x ) Solution It looks as the outside function is the sine & the inside function is 3x 2 +x. The derivative is then.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd