Basic concepts of second order differential equations, Mathematics

Assignment Help:

In this section we will be looking exclusively at linear second order differential equations. The most common linear second order differential equation is in the type.

 p (t ) y′′ + q (t) y′ + r (t ) y = g (t )  ....... (1)

Actually, we will hardly ever look at non-constant coefficient linear second order differential equations. In the section where we suppose constant coefficients we will use the subsequent differential equation.

 ay′′ + by′ + cy+= g (t )   .... (2)

 Where, probably we will utilize (1) only to make the point that specific facts, theorems, properties, or/and techniques can be used along with the non-constant form. Though, most of the time we will be using (2) as this can be fairly not easy to solve second order non-constant coefficient differential equations.

Firstly we will make our life easier through looking at differential equations along with g(t) = 0. As g(t) = 0 we call the differential equation homogeneous and as g (t ) ≠ 0 we call the differential equation non-homogeneous.

Therefore, let's start thinking about how to go regarding solving a constant homogeneous, coefficient, linear, second order differential equation. Now there is the general constant linear, coefficient, second order differential equation or homogeneous equation.

ay′′ + by′ + cy = 0

It's almost certainly best to start off with an illustration. This illustration will guide us to a very significant fact that we will use in every problem by this point on. The illustration will also provide us clues into how to go regarding to solving these in general.


Related Discussions:- Basic concepts of second order differential equations

Calculus, What is the slope of the line tangent to f(x)=3-2 ln(2x^2+4) at t...

What is the slope of the line tangent to f(x)=3-2 ln(2x^2+4) at the point (4, f(4))

Sums and differences of cubes and other odd powers, Sums and Differences of...

Sums and Differences of Cubes (and other odd powers)? You can factor a sum or difference of cubes using the formulas a 3 - b 3 = (a - b )(a 2 + ab + b 2 ) and a 3 + b 3 =

Derivatives with chain rule, Chain Rule : We've seen many derivatives...

Chain Rule : We've seen many derivatives.  However, they have all been functions similar to the following kinds of functions. R ( z ) = √z      f (t ) = t 50

Direct and inverse variation, A man can do a piece of work in 25 days how m...

A man can do a piece of work in 25 days how many people are required to complete same work in 15 days?

Estimate how much did larry spend, Larry purchased 3 pairs of pants for $24...

Larry purchased 3 pairs of pants for $24 each or have 5 shirts for $18 each. How much did Larry spend? Divide the miles through the time to find the rate; 3,060 ÷ 5 = 612 mph.

Comparison test for improper integrals - integration, Comparison Test for I...

Comparison Test for Improper Integrals Here now that we've seen how to actually calculate improper integrals we should to address one more topic about them.  Frequently we ar

Polynomial time algorithm - first order query, For queries Q 1 and Q 2 , w...

For queries Q 1 and Q 2 , we say Q 1 is contained in Q 2 , denoted Q 1 ⊆ Q 2 , iff Q 1 (D) ⊆ Q 2 (D) for every database D. The container problem for a fixed Query Q 0 i

Example of factoring quadratic polynomials, Factor following polynomials. ...

Factor following polynomials.                               x 2 + 2x -15 Solution x 2 +2x -15 Okay since the first term is x 2 we know that the factoring has to ta

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd