Basic concepts of second order differential equations, Mathematics

Assignment Help:

In this section we will be looking exclusively at linear second order differential equations. The most common linear second order differential equation is in the type.

 p (t ) y′′ + q (t) y′ + r (t ) y = g (t )  ....... (1)

Actually, we will hardly ever look at non-constant coefficient linear second order differential equations. In the section where we suppose constant coefficients we will use the subsequent differential equation.

 ay′′ + by′ + cy+= g (t )   .... (2)

 Where, probably we will utilize (1) only to make the point that specific facts, theorems, properties, or/and techniques can be used along with the non-constant form. Though, most of the time we will be using (2) as this can be fairly not easy to solve second order non-constant coefficient differential equations.

Firstly we will make our life easier through looking at differential equations along with g(t) = 0. As g(t) = 0 we call the differential equation homogeneous and as g (t ) ≠ 0 we call the differential equation non-homogeneous.

Therefore, let's start thinking about how to go regarding solving a constant homogeneous, coefficient, linear, second order differential equation. Now there is the general constant linear, coefficient, second order differential equation or homogeneous equation.

ay′′ + by′ + cy = 0

It's almost certainly best to start off with an illustration. This illustration will guide us to a very significant fact that we will use in every problem by this point on. The illustration will also provide us clues into how to go regarding to solving these in general.


Related Discussions:- Basic concepts of second order differential equations

Ratio, There are only Chinese and Malay pupils in a hall.The ratio of the n...

There are only Chinese and Malay pupils in a hall.The ratio of the number of boys to the number of girls is 2:3.The ratio of the number of Chinese boys to the number of Malay boys

Math, 1+3+5+7+9+11+13+15+17+19

1+3+5+7+9+11+13+15+17+19

., round 64 to the nearest 10

round 64 to the nearest 10

Example of learning to count, A parent shows his child four pencils. He pla...

A parent shows his child four pencils. He places them in a row in front of her and says "one" as he points to the first pencil, "two" as he points to the second one, "three" as he

Relative maximum point, Relative maximum point The above graph of the ...

Relative maximum point The above graph of the function slopes upwards to the right between points C and A and thus has a positive slope among these two points. The function ha

Evaluate the integral - trig substitutions, Example of Trig Substitutions ...

Example of Trig Substitutions Evaluate the subsequent integral. ∫ √((25x 2 - 4) / x) (dx) Solution In this type of case the substitution u = 25x 2 - 4 will not wo

Evaluate the convergence of the algorithms, Evaluate the convergence of the...

Evaluate the convergence of the algorithms: From the convergence proof of power method, LR and QR algorithm for the computation of eigenvalues we see that the easiest case to

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd