Basic concepts of second order differential equations, Mathematics

Assignment Help:

In this section we will be looking exclusively at linear second order differential equations. The most common linear second order differential equation is in the type.

 p (t ) y′′ + q (t) y′ + r (t ) y = g (t )  ....... (1)

Actually, we will hardly ever look at non-constant coefficient linear second order differential equations. In the section where we suppose constant coefficients we will use the subsequent differential equation.

 ay′′ + by′ + cy+= g (t )   .... (2)

 Where, probably we will utilize (1) only to make the point that specific facts, theorems, properties, or/and techniques can be used along with the non-constant form. Though, most of the time we will be using (2) as this can be fairly not easy to solve second order non-constant coefficient differential equations.

Firstly we will make our life easier through looking at differential equations along with g(t) = 0. As g(t) = 0 we call the differential equation homogeneous and as g (t ) ≠ 0 we call the differential equation non-homogeneous.

Therefore, let's start thinking about how to go regarding solving a constant homogeneous, coefficient, linear, second order differential equation. Now there is the general constant linear, coefficient, second order differential equation or homogeneous equation.

ay′′ + by′ + cy = 0

It's almost certainly best to start off with an illustration. This illustration will guide us to a very significant fact that we will use in every problem by this point on. The illustration will also provide us clues into how to go regarding to solving these in general.


Related Discussions:- Basic concepts of second order differential equations

Dividing fractions by fractions with drawing.., how do I divide a fraction ...

how do I divide a fraction by a fraction by drawing a picture

Factorization, factorize the following algebraic expressions

factorize the following algebraic expressions

Substitution rule, Substitution Rule ∫ f ( g ( x )) g′ ( x ) dx = ∫ f (...

Substitution Rule ∫ f ( g ( x )) g′ ( x ) dx = ∫ f (u ) du,     where, u = g ( x ) we can't do the following integrals through general rule. This looks considerably

Properties of relations in a set, Reflexive Relations: R is a reflexive...

Reflexive Relations: R is a reflexive relation if (a, a) € R,  a € A. It could be noticed if there is at least one member a € A like (a, a) € R, then R is not reflexive. Sy

Angles, how to measure missing angle of an adjacent angle

how to measure missing angle of an adjacent angle

Trigonometry, if theta is a positive acute angle and 2sin theta +15cos squ...

if theta is a positive acute angle and 2sin theta +15cos square theta=7 then find the value of cot theta

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd