Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
These can be expressed in terms of two fundamental operations of addition and multiplication.
If a, b and c are any three real numbers, then;
1. i. a + b = b + a
This property is called commutative property of addition. According to this property, addition can be carried out in any order and irrespective of this we obtain the same result. a.b = b.a This property is called commutative property of multiplication.
This property is called commutative property of addition. According to this property, addition can be carried out in any order and irrespective of this we obtain the same result.
a.b = b.a
This property is called commutative property of multiplication.
2. i. (a + b) + c = a + ( b + c)
This property is referred to as associative property of addition. According to this property, elements can be grouped according to any manner and irrespective of the grouping we obtain the same result. (a.b).c = a.(b.c) This property is referred to as the associative property of multiplication.
This property is referred to as associative property of addition. According to this property, elements can be grouped according to any manner and irrespective of the grouping we obtain the same result.
(a.b).c = a.(b.c)
This property is referred to as the associative property of multiplication.
3. a.(b + c) = a.b + a.c or (a + b).c = a.c + b.c
This property is referred to as distributive property. This is generally employed to expand a product into a sum or the other way round. That is, to rewrite a sum as a product.
4. i. a + 0 = 0 + a = a
This property is referred to as identity property under addition. That is, 0 when added to a real number returns back the number itself which is same or identical to itself. Thus 0 is the identity element under addition. a.1 = 1.a = a This property is referred to as identity property under multiplication. That is, when a real number is multiplied by 1, we get back the same number. Thus the element 1 is the multiplicative identity.
This property is referred to as identity property under addition. That is, 0 when added to a real number returns back the number itself which is same or identical to itself. Thus 0 is the identity element under addition.
a.1 = 1.a = a
This property is referred to as identity property under multiplication. That is, when a real number is multiplied by 1, we get back the same number. Thus the element 1 is the multiplicative identity.
This property is referred to as identity property under multiplication. That is, when a real number is multiplied by 1, we get back the same number.
Thus the element 1 is the multiplicative identity.
5. i. a + (-a) = (-a) + a = 0
This property is referred to as inverse property under addition. According to this property, for every element a, there exists another element - a such that the addition of the both gives us zero. The element - a is referred to as the additive inverse of the element a. On a number line, an element and its additive inverse lie at equi-distant from the origin.
This property is referred to as inverse property under multiplication. According to this property for every element a, a ≠ 0, there exists another element 1/a such that the multiplication of a and 1/a results in 1. The element 1/a is referred to as multiplicative inverse element.
6. i. If a + x = a + y, then x = y.
This property is referred to as the cancelation property. According to this property a constant quantity when present on both sides of the equation can be canceled without disturbing the balance which exists between the expressions. If a≠0 and ax = ay, then x = y. This property is referred to as the cancelation property under multiplication.
This property is referred to as the cancelation property. According to this property a constant quantity when present on both sides of the equation can be canceled without disturbing the balance which exists between the expressions.
If a≠0 and ax = ay, then x = y.
This property is referred to as the cancelation property under multiplication.
7. i. a.0 = 0.a = 0
This property is referred to as the zero factor property. According to this property any real number a, if multiplied by zero would yield a zero. This can be also put as: if one of the factors happens to be zero, irrespective of other factors, the product of all these factors would yield a zero. If a.b = 0, then a = 0 or b = 0 or both. According to this property, the product of any two real numbers a and b is zero if one of them happens to be zero, that is either a = 0 or b = 0 or both of them happen to be equal to zero.
This property is referred to as the zero factor property. According to this property any real number a, if multiplied by zero would yield a zero. This can be also put as: if one of the factors happens to be zero, irrespective of other factors, the product of all these factors would yield a zero.
If a.b = 0, then a = 0 or b = 0 or both.
According to this property, the product of any two real numbers a and b is zero if one of them happens to be zero, that is either a = 0 or b = 0 or both of them happen to be equal to zero.
Example of Circles - Common Polar Coordinate Graphs Example: Graph r = 7, r = 4 cos θ, and r = -7 sin θ on similar axis system. Solution The very first one is a circle
in a veggie mix the ratio of cups of carrots to cups of broccolie is 4 to 5 if you made this party mix larger how many cups of carrots would be needed to mix with fo cups of brocco
find s10 for the arithmetic sequenxe inwhich a1=5 and a10=68
Q. Draw Grouped Frequency Tables? Ans. Grouped frequency tables are often used when there are many different values. In these tables, the values are grouped into classes
How can I use the I=Prt formula to get the interest for this problem? A car dealer sells me a car for $16450 with $3,290 down and $339.97 monthly payments for 48 months. What is
A mailbox opening is 4.5 inches high and 5 inches wide. Determine the widest piece of mail able to ?t in the mailbox without bending? a. 9.5 inches b. 2.2 inches c. 6.7 in
How many arrangements can be made from the letters of the word " VENUS " such that the order of the vowels remains the same?
Prove that a m + n + a m - n =2a m Ans: a m + n = a 1 + (m + n - 1) d a m-n = a 1 + (m - n -1) d a m = a 1 + (m-1) d Add 1 & 2 a m+n + a m-n =
(1 0 3 21 -1 1 -1 1) find A-1
Simplify following and write the answers with only positive exponents. (-10 z 2 y -4 ) 2 ( z 3 y ) -5 Solution (-10 z 2 y -4 ) 2 ( z 3 y ) -5
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd