Average function value, Mathematics

Assignment Help:

Average Function Value

The average value of a function f(x) over the interval [a,b] is specified by,

favg = (1/b-a) ab f(x) dx

Proof

We know that the average value of n numbers is only the total of all the numbers divided with n therefore let's start off with this. Let's take the interval [a,b] and divide this in n subintervals each of length,

x = (b -a)/n

Now by all of these intervals select the points x1*, x2*,...., xn* and consider that this doesn't really issue how we select each of these numbers as long as they arrive from the suitable interval.

 We can then calculate the average of the function values f(x1*), f(x2*),.....,f(xn*) by computing,

(f(x1*), f(x2*),.....,f(xn*))/n

Here, from our definition of ?x we can find the formula for n as given in below.

n = (b -a)/ ?x

and we can plug it  in (4) to have,

(f(x1*), f(x2*),.....,f(xn*))/((b -a)/ ?x)

= ([f(x1*), f(x2*),.....,f(xn*)]?x)/(b -a)

= (1/(b -a)) ([f(x1*), f(x2*),.....,f(xn*)]?x)

= (1/(b -a))  490_mean.png    f(xi*)?x

Let's here raise n. Doing that will mean that we are taking the average of increasingly function values in the interval and therefore the larger we select n the better it will approximate the average value of the function.

If we did so take the limit as n goes to infinity we must find the average function value. Or,

favg = limn→∞ (1/b-a)  490_mean.png       f(xi*) ?x = (1/(b -a))      490_mean.png                 ab f(xi*) dx

We can factor the 1/(b -a) out of the limit where we have done and here the limit of the sum must look familiar as which is the definition of the definite integral. Therefore, putting in definite integral we find the formula as we were after.

favg = (1/(b -a)) ab f(x) dx


Related Discussions:- Average function value

Addition and subtraction of rational expressions, Now come to addition and ...

Now come to addition and subtraction of rational expressions.  Following are the general formulas.  (a/c) + (b/c) = (a + b)/c

Decision-making under conditions of uncertainty, Decision-Making Under Cond...

Decision-Making Under Conditions of Uncertainty With decision making under uncertainty, the decision maker is aware of different possible states of nature, but has insufficient

Undetermined coefficients, In this section we will see the first method whi...

In this section we will see the first method which can be used to find an exact solution to a nonhomogeneous differential equation. y′′ + p (t ) y′ + q (t ) y = g (t) One of

Total linear attenuation, Consider the task of identifying a 1 cm thick bre...

Consider the task of identifying a 1 cm thick breast cancer that is embedded inside a 4.2 cm thick fibroglandular breast as depicted in Fig. The cancerous tumor has a cross

Each child is unique in learning development, Each Child Is Unique :  Alth...

Each Child Is Unique :  Although every child goes through similar stages of development, the process may vary from one set of children to another, and also from one child to anoth

Determine the probability - conditional probability, A bag of 28 tulip bulb...

A bag of 28 tulip bulbs contains 12 red tulip bulbs, 9 yellow tulip bulbs, and 7 purple tulip bulbs. Two bulbs are selected without replacement. Determine, a) The probability th

Homework, Euler''''s Constant (e) Approximate the number to the one hundred...

Euler''''s Constant (e) Approximate the number to the one hundredth, one ten-thousandths, and one one-hundred-millionth.

Show that af+bd+ce=ae+bf+cd= 1/2 , In figure, the incircle of triangle ABC...

In figure, the incircle of triangle ABC touches the sides BC, CA, and AB at D, E, and F respectively. Show that AF+BD+CE=AE+BF+CD= 1/2   (perimeter of triangle ABC), Ans:

We know this equation a°=1.prove this?, we know that log1 to any base =0 ta...

we know that log1 to any base =0 take antilog threfore a 0 =1

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd