Average function value, Mathematics

Assignment Help:

Average Function Value

The average value of a function f(x) over the interval [a,b] is specified by,

favg = (1/b-a) ab f(x) dx

Proof

We know that the average value of n numbers is only the total of all the numbers divided with n therefore let's start off with this. Let's take the interval [a,b] and divide this in n subintervals each of length,

x = (b -a)/n

Now by all of these intervals select the points x1*, x2*,...., xn* and consider that this doesn't really issue how we select each of these numbers as long as they arrive from the suitable interval.

 We can then calculate the average of the function values f(x1*), f(x2*),.....,f(xn*) by computing,

(f(x1*), f(x2*),.....,f(xn*))/n

Here, from our definition of ?x we can find the formula for n as given in below.

n = (b -a)/ ?x

and we can plug it  in (4) to have,

(f(x1*), f(x2*),.....,f(xn*))/((b -a)/ ?x)

= ([f(x1*), f(x2*),.....,f(xn*)]?x)/(b -a)

= (1/(b -a)) ([f(x1*), f(x2*),.....,f(xn*)]?x)

= (1/(b -a))  490_mean.png    f(xi*)?x

Let's here raise n. Doing that will mean that we are taking the average of increasingly function values in the interval and therefore the larger we select n the better it will approximate the average value of the function.

If we did so take the limit as n goes to infinity we must find the average function value. Or,

favg = limn→∞ (1/b-a)  490_mean.png       f(xi*) ?x = (1/(b -a))      490_mean.png                 ab f(xi*) dx

We can factor the 1/(b -a) out of the limit where we have done and here the limit of the sum must look familiar as which is the definition of the definite integral. Therefore, putting in definite integral we find the formula as we were after.

favg = (1/(b -a)) ab f(x) dx


Related Discussions:- Average function value

Find the sum of all natural numbers, Find the sum of all natural numbers am...

Find the sum of all natural numbers amongst first one thousand numbers which are neither divisible 2 or by 5 Ans:    Sum of all natural numbers in first 1000 integers which ar

Cenamatic, a tire placed on a balancing machine in a service station starts...

a tire placed on a balancing machine in a service station starts from rest an d turns through 4.7 revolutions in 1.2 seconds before reaching its final angular speed Calculate its a

Show that positive integers is divisible by 6, Show that the product of 3 c...

Show that the product of 3 consecutive positive integers is divisible by 6. Ans: n,n+1,n+2 be three consecutive positive integers We know that n is of the form 3q, 3q +1

TRIANGLES, ABCD is a trapezium AB parallel to DC prove square of AC - squar...

ABCD is a trapezium AB parallel to DC prove square of AC - square of BCC= AB*

The arithmetic mean, Arithmetic mean Arithmetic means is commonly know...

Arithmetic mean Arithmetic means is commonly known as average or mean it is acquired by first of all summing up the values provided and by dividing the total value by the tota

Spherical coordinates - three dimensional space, Spherical Coordinates - Th...

Spherical Coordinates - Three Dimensional Space In this part we will introduce spherical coordinates. Spherical coordinates which can take a little getting employed to.  It's

Piecewise, x=±4, if -2 = y =0 x=±2, if -2 = y = 0

x=±4, if -2 = y =0 x=±2, if -2 = y = 0

What is the length of the longer base, The longer base of a trapezoid is th...

The longer base of a trapezoid is three times the shorter base. The nonparallel sides are congruent. The nonparallel side is 5 cm more that the shorter base. The perimeter of the t

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd