Average function value, Mathematics

Assignment Help:

Average Function Value

The average value of a function f(x) over the interval [a,b] is specified by,

favg = (1/b-a) ab f(x) dx

Proof

We know that the average value of n numbers is only the total of all the numbers divided with n therefore let's start off with this. Let's take the interval [a,b] and divide this in n subintervals each of length,

x = (b -a)/n

Now by all of these intervals select the points x1*, x2*,...., xn* and consider that this doesn't really issue how we select each of these numbers as long as they arrive from the suitable interval.

 We can then calculate the average of the function values f(x1*), f(x2*),.....,f(xn*) by computing,

(f(x1*), f(x2*),.....,f(xn*))/n

Here, from our definition of ?x we can find the formula for n as given in below.

n = (b -a)/ ?x

and we can plug it  in (4) to have,

(f(x1*), f(x2*),.....,f(xn*))/((b -a)/ ?x)

= ([f(x1*), f(x2*),.....,f(xn*)]?x)/(b -a)

= (1/(b -a)) ([f(x1*), f(x2*),.....,f(xn*)]?x)

= (1/(b -a))  490_mean.png    f(xi*)?x

Let's here raise n. Doing that will mean that we are taking the average of increasingly function values in the interval and therefore the larger we select n the better it will approximate the average value of the function.

If we did so take the limit as n goes to infinity we must find the average function value. Or,

favg = limn→∞ (1/b-a)  490_mean.png       f(xi*) ?x = (1/(b -a))      490_mean.png                 ab f(xi*) dx

We can factor the 1/(b -a) out of the limit where we have done and here the limit of the sum must look familiar as which is the definition of the definite integral. Therefore, putting in definite integral we find the formula as we were after.

favg = (1/(b -a)) ab f(x) dx


Related Discussions:- Average function value

Equation, Solve : 4x2+2x+3=0 Ans) x^2 + (1/2)x = -(3/4) (x+1/4)^2 = 1/...

Solve : 4x2+2x+3=0 Ans) x^2 + (1/2)x = -(3/4) (x+1/4)^2 = 1/16 - 3/4 = -11/16 implies x = (-1+i(11)^(1/2))/4 and its conjugate.

Mean and standard deviation, Q. Mean and Standard Deviation? Ans. ...

Q. Mean and Standard Deviation? Ans. The normal distribution is totally described if we know the average and standard deviation. - the population mean of the distribu

Geometry, what is the product of the solutions to the equation: x2+4x=-4

what is the product of the solutions to the equation: x2+4x=-4

Math, how do you add all the Y.AND X UP WITH 3

how do you add all the Y.AND X UP WITH 3

Non zero sum games- game theory, Non Zero Sum Games Recently there was ...

Non Zero Sum Games Recently there was no satisfactory theory either to describe how people should play non-zero games or to explain how they actually play that game Nigel Ho

Find out the greatest common factor, Find out the Greatest Common Factor? ...

Find out the Greatest Common Factor? The largest number that is a common factor of two numbers (that is, both numbers share the same factor) is called the greatest common facto

Do all our activities involve mathematics?, Do All Our Activities Involve M...

Do All Our Activities Involve Mathematics? :  The answer to this is 'yes' and 'no'. For those who look for mathematics and know where to look for it, it is 'yes'. For those who do

Laplace transforms, Here is not too much to this section. We're here going ...

Here is not too much to this section. We're here going to work an illustration to exemplify how Laplace transforms can be used to solve systems of differential equations. Illus

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd