Average function value, Mathematics

Assignment Help:

Average Function Value

The average value of a function f(x) over the interval [a,b] is specified by,

favg = (1/b-a) ab f(x) dx

Proof

We know that the average value of n numbers is only the total of all the numbers divided with n therefore let's start off with this. Let's take the interval [a,b] and divide this in n subintervals each of length,

x = (b -a)/n

Now by all of these intervals select the points x1*, x2*,...., xn* and consider that this doesn't really issue how we select each of these numbers as long as they arrive from the suitable interval.

 We can then calculate the average of the function values f(x1*), f(x2*),.....,f(xn*) by computing,

(f(x1*), f(x2*),.....,f(xn*))/n

Here, from our definition of ?x we can find the formula for n as given in below.

n = (b -a)/ ?x

and we can plug it  in (4) to have,

(f(x1*), f(x2*),.....,f(xn*))/((b -a)/ ?x)

= ([f(x1*), f(x2*),.....,f(xn*)]?x)/(b -a)

= (1/(b -a)) ([f(x1*), f(x2*),.....,f(xn*)]?x)

= (1/(b -a))  490_mean.png    f(xi*)?x

Let's here raise n. Doing that will mean that we are taking the average of increasingly function values in the interval and therefore the larger we select n the better it will approximate the average value of the function.

If we did so take the limit as n goes to infinity we must find the average function value. Or,

favg = limn→∞ (1/b-a)  490_mean.png       f(xi*) ?x = (1/(b -a))      490_mean.png                 ab f(xi*) dx

We can factor the 1/(b -a) out of the limit where we have done and here the limit of the sum must look familiar as which is the definition of the definite integral. Therefore, putting in definite integral we find the formula as we were after.

favg = (1/(b -a)) ab f(x) dx


Related Discussions:- Average function value

Find interval of function, Find interval for which the function f(x)=xe x(1...

Find interval for which the function f(x)=xe x(1-x)   is increasing or decreasing function

Probability of chosen number from 1st 500 divisble by 3or5 , IN THIS WE HAV...

IN THIS WE HAVE TO ADD THE PROBABILITY of 3 and 5  occuring separtely and subtract prob. of 3 and 5 occuring together therefore p=(166+100-33)/500=233/500=0.466

Recursively, Let a 0 , a 1 ::: be the series recursively defined by a 0 =...

Let a 0 , a 1 ::: be the series recursively defined by a 0 = 1, and an = 3 + a n-1 for n ≥ 1. (a) Compute a 1 , a 2 , a 3 and a 4 . (b) Compute a formula for an, n ≥ 0.

Squeeze theorem (sandwich theorem and the pinching theorem), Squeeze Theore...

Squeeze Theorem (Sandwich Theorem and the Pinching Theorem) Assume that for all x on [a, b] (except possibly at x = c ) we have,                                 f ( x )≤ h (

Calculate the area of circle, Calculate the area of CIRCLE ? A circle i...

Calculate the area of CIRCLE ? A circle is a set of all points that are at a given distance from a center point. The diameter (d) of a circle is the length of a line that goes

Most crucial aspect of learning multiplication, Which of the following is t...

Which of the following is the most crucial aspect of learning multiplication? i) Multiplication facts ii) Recall of tables and their recitation iii) Understanding "how man

Linear programming problem, I have a linear programming problem that we are...

I have a linear programming problem that we are to work out in QM for Windows and I can''t figure out how to lay it out. Are you able to help me if I send you the problem?

Prove that three times the sum of the squares, Prove that three times the s...

Prove that three times the sum of the squares of the sides of a triangle is equal to four times the sum of the squares of the medians of the triangle. Ans:    To prove 3(AB 2

Economics, A mortgage lender seeks to maximize the expected value of its po...

A mortgage lender seeks to maximize the expected value of its portfolio. The portfolio, of course, is the sum of all of the mortgages in it, so no generality is lost by examining t

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd