Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Automata and Compiler
(1) [25 marks] Let N be the last two digits of your student number. Design a finite automaton that accepts the language of strings that end with the last four bits of the binary expansion of N. (1.1) Make a regular expression ? of this language. For example the set of strings that end with 101 is expressed by a regular expression (0+1)*101. (1.2) Make an NFA that accepts this expression ?. You should remove any ?-moves that can be done trivially by inspection. (1.3) Make a subset automaton that accepts the language. (1.4) Perform state minimization on the above automaton.
(2) [25 marks] A CFG is given by S ? aSbS, S ? bSaS, S ? c
(2.1) Draw a syntax chart for this grammar. [5]
(2.2) Write a Python program for the recursive descent parser Trace the parser using two strings of at least 10 symbols, one for an accepted case and one for an unaccepted case. Do the trace using the style in the notes. [20]
(3) [25 marks] A sample program for computing the greatest common divisor by recursive call and its object program are given below. Some sample comments are given.
const a=75, b=55;
var x, y;
procedure gcd;
var w;
begin
if y>0 then begin
w:=y;
y:=x ? (x/y)*y;
x:=w;
call gcd;
end;
x:=a; y:=b;
write(x);
end.
0 jmp 0 21 Jump to 21, start of main
1 jmp 0 2
2 inc 0 4
3 lod 1 4
4 lit 0 0 Load literal 0
5 opr 0 12 Test if y>0
6 jpc 0 20 Jump to 20 if false
7 lod 1 4 Load y
8 sto 0 3 Store in w
9 lod 1 3
10 lod 1 3
11 lod 1 4
12 opr 0 5
13 lod 1 4
14 opr 0 4
15 opr 0 3
16 sto 1 4
17 lod 0 3
18 sto 1 3
19 cal 1 2
20 opr 0 0
21 inc 0 5
22 lit 0 75
23 sto 0 3
24 lit 0 55
25 sto 0 4
26 cal 0 2
27 lod 0 3
28 wrt 0 0 Write stack top
29 opr 0 0
For every regular language there is a constant n depending only on L such that, for all strings x ∈ L if |x| ≥ n then there are strings u, v and w such that 1. x = uvw, 2. |u
Computations are deliberate for processing information. Computability theory was discovered in the 1930s, and extended in the 1950s and 1960s. Its basic ideas have become part of
Myhill graphs also generalize to the SLk case. The k-factors, however, cannot simply denote edges. Rather the string σ 1 σ 2 ....... σ k-1 σ k asserts, in essence, that if we hav
The class of Strictly Local Languages (in general) is closed under • intersection but is not closed under • union • complement • concatenation • Kleene- and positive
First model: Computer has a ?xed number of bits of storage. You will model this by limiting your program to a single ?xed-precision unsigned integer variable, e.g., a single one-by
Construct a PDA that accepts { x#y | x, y in {a, b}* such that x ? y and xi = yi for some i, 1 = i = min(|x|, |y|) }. For your PDA to work correctly it will need to be non-determin
Application of the general suffix substitution closure theorem is slightly more complicated than application of the specific k-local versions. In the specific versions, all we had
When we study computability we are studying problems in an abstract sense. For example, addition is the problem of, having been given two numbers, returning a third number that is
Ask queyystion #Minimum 100 words accepted#
Since the signi?cance of the states represented by the nodes of these transition graphs is arbitrary, we will allow ourselves to use any ?nite set (such as {A,B,C,D,E, F,G,H} or ev
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd