Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
One of the simplest circuits is the asynchronous or ' ripple' counter. Below is shown the circuit diagram of a simple 3 stage ripple counter.
The operation of this circuit is based on the fact that the truth table for the JK flip flop is only valid if the clock waveform is falling, i.e. 1->0. Assume the outputs are all zero, the flip flops will not change until the clock on each flip flop falls. The clock in waveform has just fallen ,since the JKa inputs are logic '1' the device will toggle and the output will invert i.e. Qa=1. Flip flop B will not change because the clock waveform on B has risen (0->1) and these devices only functions on a falling edge. The clock in waveform has fallen again, so Qa toggles again (i.e. Qa =0), this has just produced a falling clock on JKb and Qb toggles (i.e. Qab=1) .The device has just counted from 000-> 001->010.
The circuit is called a ripple counter because the clock pulse is slowly rippling through the JK's, hence asynchronous (Not at the same time!) .The limitations of the asynchronous counter is the speed of operation. A rough formula for the maximum speed is when the clock changes before the output changes i.e. F = 1 / n x propagation delay where n = number of stages, propagation delay of one JK
A better technique is to use a synchronous design where all the JK are clocked together so the maximum frequency is only limited by the propagation delay of 1 JK.
The circuit appears to be complex in design, however it is easily realised by using state diagrams. The maximum frequency of operation is again roughly calculated by considering the frequency at which the output just changes before the clock in changes. F = 1/ Propagation delay
Q. A current i(t) = 20 cos(2π × 60)t A fows through a wire. Find the charge flowing, and the number of electrons per second that are passing some point in the wire.
Q. Why do we cascade amplifiers? Why is RC coupling the most widely used coupling between 2 stages of a cascading amplifier? The voltage or power gain or frequency response obt
100 words
PlZ Explain broooooo ..? What is Miller circuit and bootstrap I have xm tomrow and I am not getting answers soo plz.
Voltage regulator: A voltage regulator is an electrical regulator intended to automatically keep a constant voltage level. A voltage regulator is an instance of a negative fee
STAX Store Accumulator Indirect Instruction This instruction is used to copy data from accumulator to the memory location pointed by register pair ( only BC or DE pair).
fast decoupled program
Design a combination circuit to combine two signals as follows: v 0 = -2 v 1 - 8v 2 - v 3 The following specifications are imposed: R in ≥ 20 k? at all inputs All
Q. Let v(t) = V max cos ωt be applied to (a) a pure resistor, (b) a pure capacitor (with zero initial capacitor voltage, and (c) a pure inductor (with zero initial inductor curren
how do you work it out if there are 3 sources in parallel?
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd