Asynchronous and synchronous logic design, Electrical Engineering

Assignment Help:

One of the simplest circuits is the asynchronous or ' ripple' counter. Below is shown the circuit diagram of a simple 3 stage ripple counter.

1234_Asynchronous and Synchronous logic design.png

The operation of this circuit is based on the fact that the truth table for the JK flip flop is only valid if the clock waveform is falling, i.e. 1->0. Assume the outputs are all zero, the flip flops will not change until the clock on each flip flop falls. The clock in waveform has just fallen  ,since the JKa inputs are logic '1' the device will toggle and the output will invert i.e. Qa=1. Flip flop B will not change because the clock waveform on B has risen    (0->1) and these devices only functions on a falling edge. The clock in waveform has fallen again, so Qa toggles again (i.e. Qa =0), this has just produced a falling clock on JKb and Qb toggles (i.e. Qab=1) .The device has just counted from 000-> 001->010.

960_Asynchronous and Synchronous logic design1.png

The circuit is called a ripple counter because the clock pulse is slowly rippling through the JK's, hence asynchronous (Not at the same time!) .The limitations of the asynchronous counter is the speed of operation. A rough formula for the maximum speed is when the clock changes before the output changes i.e.

      F =  1 / n x propagation delay
 
   where n = number of stages, propagation delay of one JK

A better technique is to use a synchronous design where all the JK are clocked together so the maximum frequency is only limited by the propagation delay of 1 JK.  

59_Asynchronous and Synchronous logic design2.png

 
The circuit appears to be complex in design, however it is easily realised by using state diagrams. The maximum frequency of operation is again roughly calculated by considering the frequency at which the output just changes before the clock in changes.
    
      F = 1/ Propagation delay


Related Discussions:- Asynchronous and synchronous logic design

Beem, Ballistic galvanometer

Ballistic galvanometer

Design an electro-pneumatic system, (i) Sketch a fully-labelled electro-pne...

(i) Sketch a fully-labelled electro-pneumatic circuit showing your actuators in the START position and employ metered out speed control with mono-stable 5/2 DCV's having solenoid a

Explain the working of electronic multimeter, Q.  Give suitable block diag...

Q.  Give suitable block diagram to explain the working of electronic multimeter. Sol. An electronic multimeter is a laboratory instrument which is capable of measurement of

Magnetic circuits, develop and explain series and parallel magnetic circuit...

develop and explain series and parallel magnetic circuits?

Show the load current is independent of zl, Q. A negative impedance convert...

Q. A negative impedance converter is used, as shown in Figure. Show that the load current i L is given by v in /R, which is independent of Z L . Note that since the load sees a cu

Bad effects of armature reactions, Q.  What is meant by armature reaction....

Q.  What is meant by armature reaction. Explain briefly the bad effects of armature reactions.   Sol. By armature reaction is meant the effect of magnetic field set up

Dc motor control, how thyristor work in speed control??

how thyristor work in speed control??

Illustrate computer-controlled routing, Q. Illustrate Computer-controlled r...

Q. Illustrate Computer-controlled routing? Computers are employed in network with common channel signaling (CCS) features. In CCS, there is a separate computer-controlled signa

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd