Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
One of the simplest circuits is the asynchronous or ' ripple' counter. Below is shown the circuit diagram of a simple 3 stage ripple counter.
The operation of this circuit is based on the fact that the truth table for the JK flip flop is only valid if the clock waveform is falling, i.e. 1->0. Assume the outputs are all zero, the flip flops will not change until the clock on each flip flop falls. The clock in waveform has just fallen ,since the JKa inputs are logic '1' the device will toggle and the output will invert i.e. Qa=1. Flip flop B will not change because the clock waveform on B has risen (0->1) and these devices only functions on a falling edge. The clock in waveform has fallen again, so Qa toggles again (i.e. Qa =0), this has just produced a falling clock on JKb and Qb toggles (i.e. Qab=1) .The device has just counted from 000-> 001->010.
The circuit is called a ripple counter because the clock pulse is slowly rippling through the JK's, hence asynchronous (Not at the same time!) .The limitations of the asynchronous counter is the speed of operation. A rough formula for the maximum speed is when the clock changes before the output changes i.e. F = 1 / n x propagation delay where n = number of stages, propagation delay of one JK
A better technique is to use a synchronous design where all the JK are clocked together so the maximum frequency is only limited by the propagation delay of 1 JK.
The circuit appears to be complex in design, however it is easily realised by using state diagrams. The maximum frequency of operation is again roughly calculated by considering the frequency at which the output just changes before the clock in changes. F = 1/ Propagation delay
what do you mean by band in communication? how it differs from bandwidth?
What is the power of the signal transmitted by powerful cell phones? Ans) The powerful cell phones can transfer a signal of 3 watts.
(a) A second order Sallen and Key Low Pass Active Filter has these component values R 1 =R 2 =15 kΩ, C 1 =C 2 =1 nF and the feedback resistors are R 3 =3.9 kΩ and R 4 =2.3 kΩ
Design : Rather than 100 two-motion selectors as in the case of Design 3, let's consider only 24 two-motion selectors. In the case 24 simultaneous calls can be put through the swi
A large induction motor is usually started by applying a reduced voltage across themotor; such a voltage may be obtained from an autotrans- former. A motor is to be started on 50%
Explain Magnetostriction. Magnetostriction: If ferromagnetic materials are magnetized a small change of dimensions of the material obtains place. There is a small extension alo
Binary to Hexadecimal Conversion To convert a binary number into hexadecimal divide the number into group of four bits each starting from the least significant bit. Th
Q. Show output Characteristic Of Common Emitter Configuration? Output characteristics: This family of curves may be divided into three regions just as was done for common base
Define Flash Analog to Digital Converters? Parallel flash ADCs transform the analog input voltage faster as compared to other types of ADCs. They compare the voltage in parall
A 6-pole armature has 1000 conductors and a flux per pole of 40mWb. Determine the e.m.f. generated when running at 600 rev/min when (a) lap wound (b) wave wound.
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd