Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
One of the simplest circuits is the asynchronous or ' ripple' counter. Below is shown the circuit diagram of a simple 3 stage ripple counter.
The operation of this circuit is based on the fact that the truth table for the JK flip flop is only valid if the clock waveform is falling, i.e. 1->0. Assume the outputs are all zero, the flip flops will not change until the clock on each flip flop falls. The clock in waveform has just fallen ,since the JKa inputs are logic '1' the device will toggle and the output will invert i.e. Qa=1. Flip flop B will not change because the clock waveform on B has risen (0->1) and these devices only functions on a falling edge. The clock in waveform has fallen again, so Qa toggles again (i.e. Qa =0), this has just produced a falling clock on JKb and Qb toggles (i.e. Qab=1) .The device has just counted from 000-> 001->010.
The circuit is called a ripple counter because the clock pulse is slowly rippling through the JK's, hence asynchronous (Not at the same time!) .The limitations of the asynchronous counter is the speed of operation. A rough formula for the maximum speed is when the clock changes before the output changes i.e. F = 1 / n x propagation delay where n = number of stages, propagation delay of one JK
A better technique is to use a synchronous design where all the JK are clocked together so the maximum frequency is only limited by the propagation delay of 1 JK.
The circuit appears to be complex in design, however it is easily realised by using state diagrams. The maximum frequency of operation is again roughly calculated by considering the frequency at which the output just changes before the clock in changes. F = 1/ Propagation delay
Transparent latch D flip Flop A typical example of this type of D flop is 7475 shown in figure when CLK connected is enable signal is high and the flip flop is enabled
what is the difference between latch and flipflop
what does actually feredy law wants to proof.
distillation
design single phase distribution circuit from a supply point to a load
Write Some Notes for the Gauss-Seidel Method? 1. Equation below is used to calculate the voltage at each busbar in turn, always using the most up to date values for the other
a. Describe the meaning of standing wave ratio. What is the formula for it, if the load is purely resistive? Why is a high value of SWR often undesirable? b. Determine how the c
Two projects using the principle of functional independence, increases system accuracy?
Define Voltage Source Multiplying DAC? Voltage source multiplying DACs use a reference voltage which is switched in or out by the digital data. The converter is so-named becau
i need a line diagram sample of a large network, i need to practice how to draw and design such network
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd