Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
One of the simplest circuits is the asynchronous or ' ripple' counter. Below is shown the circuit diagram of a simple 3 stage ripple counter.
The operation of this circuit is based on the fact that the truth table for the JK flip flop is only valid if the clock waveform is falling, i.e. 1->0. Assume the outputs are all zero, the flip flops will not change until the clock on each flip flop falls. The clock in waveform has just fallen ,since the JKa inputs are logic '1' the device will toggle and the output will invert i.e. Qa=1. Flip flop B will not change because the clock waveform on B has risen (0->1) and these devices only functions on a falling edge. The clock in waveform has fallen again, so Qa toggles again (i.e. Qa =0), this has just produced a falling clock on JKb and Qb toggles (i.e. Qab=1) .The device has just counted from 000-> 001->010.
The circuit is called a ripple counter because the clock pulse is slowly rippling through the JK's, hence asynchronous (Not at the same time!) .The limitations of the asynchronous counter is the speed of operation. A rough formula for the maximum speed is when the clock changes before the output changes i.e. F = 1 / n x propagation delay where n = number of stages, propagation delay of one JK
A better technique is to use a synchronous design where all the JK are clocked together so the maximum frequency is only limited by the propagation delay of 1 JK.
The circuit appears to be complex in design, however it is easily realised by using state diagrams. The maximum frequency of operation is again roughly calculated by considering the frequency at which the output just changes before the clock in changes. F = 1/ Propagation delay
LKI Load Register pair Immediate Instruction This instruction is used to copy or load 16 bit data specified in the instruction directly into the register pair. The i
what is the varactor diode?
The resistance of a wire is 60 ? at 25 o C and 65? at 75 o C. Find the resistance of wire at 0 o C and value of temperature co-efficient at 0 o C. Ans: Given R 25 = 60 ? a
Conditional Call Instruction Similar to conditional jump instructions there are conditional call instructions also based on various flags.
Discuss the following points with regard to the Company selecting Jebel Ali Free Zone as its Middle East base. (a) How is a company likely to enhance its supply chain by using
A moving coil galvanometer consists of a coil in a uniform magnetic field B o, suspended fro a fibre of torque constant C, current I produces a deflection O=nAB o i/c where n is
Q. Give an introductive notes about FET amplifier ? The small signal models for the common source FET can be used for analyzing the three basic FET amplifier configurations: (
a 4 bit synchronous counter uses flip flops with propagation delay times of 15ns each. what will be the maximum possible time requires for change of state?
Q. For given asymptotic Bode plots. (a) Find ¯H 1 , ¯H 2 , and ¯H 3 at ω = 5 rad/s. (b) At what angular frequency ω is the magnitude of ¯H 4 (jω) one-half of the magnitude o
What is meant by Daisy Chaining method? It does not need any priority resolving network, rather the priorities of all the devices are effectively assumed to be in sequence.
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd