Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
One of the simplest circuits is the asynchronous or ' ripple' counter. Below is shown the circuit diagram of a simple 3 stage ripple counter.
The operation of this circuit is based on the fact that the truth table for the JK flip flop is only valid if the clock waveform is falling, i.e. 1->0. Assume the outputs are all zero, the flip flops will not change until the clock on each flip flop falls. The clock in waveform has just fallen ,since the JKa inputs are logic '1' the device will toggle and the output will invert i.e. Qa=1. Flip flop B will not change because the clock waveform on B has risen (0->1) and these devices only functions on a falling edge. The clock in waveform has fallen again, so Qa toggles again (i.e. Qa =0), this has just produced a falling clock on JKb and Qb toggles (i.e. Qab=1) .The device has just counted from 000-> 001->010.
The circuit is called a ripple counter because the clock pulse is slowly rippling through the JK's, hence asynchronous (Not at the same time!) .The limitations of the asynchronous counter is the speed of operation. A rough formula for the maximum speed is when the clock changes before the output changes i.e. F = 1 / n x propagation delay where n = number of stages, propagation delay of one JK
A better technique is to use a synchronous design where all the JK are clocked together so the maximum frequency is only limited by the propagation delay of 1 JK.
The circuit appears to be complex in design, however it is easily realised by using state diagrams. The maximum frequency of operation is again roughly calculated by considering the frequency at which the output just changes before the clock in changes. F = 1/ Propagation delay
Given S(F) = A'B +'C'D + C'D +'A'B + 'A B + 'A 'C + 'A D + 'A C A. DRAW A MINIMIZED CIRCUIT USING ONLY OR AND NOT GATES (2 input gates) B. WRITE THE WIRE LIST Example of a
advantages of superposition theorem
Define The universal property of NAND and NOR Gates? The NAND and NOR gates are called universal gates, because any gate can build by using these two gates. The univers
Power MOSFET MOSFET stands for metal oxide semiconductor fields effect transistor. A power MOSFET has three terminal drain source and gate,. It is unipolar device me
If E b /N 0 = 20 in a coherent ASK system, find the value of Eb/N0 that is needed in a noncoherent ASK system to yield the same value of Pe as the coherent system.
Q. An antenna has beam widths of 3° and 10° in orthogonal planes and has a radiation ef?ciency factor of 0.6. Find the maximum radiation inten- sity if 1 kW is applied to the anten
A 3-kVA, 220:110-V, 60-Hz, single-phase transformer yields these test data: • Open-circuit test: 200 V, 1.4 A, 50 W • Short-circuit test: 4.5 V, 13.64 A, 30 W Determine th
Aims More practice using data movement and control flow statements. Understand techniques to interface microprocessors with external switch-based hardware. Write P
3-Phase 4 Wire Meters with CT and MD If load is commonly more than 50 A, CT operated meters should be used. It is to be remembered that CTs should be properly selected for acc
Q. Explain with the help of a block diagram the working of harmonic distortion analyzer. OR Write short note on Harmonic distortion analyzer. Sol. Several methods h
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd