Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
One of the simplest circuits is the asynchronous or ' ripple' counter. Below is shown the circuit diagram of a simple 3 stage ripple counter.
The operation of this circuit is based on the fact that the truth table for the JK flip flop is only valid if the clock waveform is falling, i.e. 1->0. Assume the outputs are all zero, the flip flops will not change until the clock on each flip flop falls. The clock in waveform has just fallen ,since the JKa inputs are logic '1' the device will toggle and the output will invert i.e. Qa=1. Flip flop B will not change because the clock waveform on B has risen (0->1) and these devices only functions on a falling edge. The clock in waveform has fallen again, so Qa toggles again (i.e. Qa =0), this has just produced a falling clock on JKb and Qb toggles (i.e. Qab=1) .The device has just counted from 000-> 001->010.
The circuit is called a ripple counter because the clock pulse is slowly rippling through the JK's, hence asynchronous (Not at the same time!) .The limitations of the asynchronous counter is the speed of operation. A rough formula for the maximum speed is when the clock changes before the output changes i.e. F = 1 / n x propagation delay where n = number of stages, propagation delay of one JK
A better technique is to use a synchronous design where all the JK are clocked together so the maximum frequency is only limited by the propagation delay of 1 JK.
The circuit appears to be complex in design, however it is easily realised by using state diagrams. The maximum frequency of operation is again roughly calculated by considering the frequency at which the output just changes before the clock in changes. F = 1/ Propagation delay
Simplify using k-map f(A,B,C,D)=?M(4,6,10,12,13,15) Using behavioral modeling in xilinx VHDL
electrical designer salary above 6years experience, in singapore
Q. A dc series motor operates at 750 r/min with a line current of 100 A from the 250-V mains. Its armature-circuit resistance is 0.15 and its series-field resistance is 0.1 . As
Forward and Reverse battery bias In diagram below(a) the battery is arranged that is why the negative terminal supplies electrons to the N-type material. These types of electr
Q. Applications of operational amplifiers? An op amp along with a few external components (resistors and capacitors) is capable of performing many different operations-hence th
A button does some command in a program when it is clicked. Buttons generally have a 3-dimensional look, although you may have to move the mouse over the button for it to look 3D.
write down the application of shift register and explain it.
Q. What is centralized SPC? In centralized control, all control equipment is replaced by a single processor which should be quite powerful. It should be capable of processing 1
Q. Common-Drain JFET Amplifier? Figure (a) shows a CD JFET amplifier in which resistors R 1 , R 2 , and R SS are selected by the bias design, and capacitors CG and CS are chos
#questixxxxxxxxxxxxxxxxxxxxon..
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd