Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
One of the simplest circuits is the asynchronous or ' ripple' counter. Below is shown the circuit diagram of a simple 3 stage ripple counter.
The operation of this circuit is based on the fact that the truth table for the JK flip flop is only valid if the clock waveform is falling, i.e. 1->0. Assume the outputs are all zero, the flip flops will not change until the clock on each flip flop falls. The clock in waveform has just fallen ,since the JKa inputs are logic '1' the device will toggle and the output will invert i.e. Qa=1. Flip flop B will not change because the clock waveform on B has risen (0->1) and these devices only functions on a falling edge. The clock in waveform has fallen again, so Qa toggles again (i.e. Qa =0), this has just produced a falling clock on JKb and Qb toggles (i.e. Qab=1) .The device has just counted from 000-> 001->010.
The circuit is called a ripple counter because the clock pulse is slowly rippling through the JK's, hence asynchronous (Not at the same time!) .The limitations of the asynchronous counter is the speed of operation. A rough formula for the maximum speed is when the clock changes before the output changes i.e. F = 1 / n x propagation delay where n = number of stages, propagation delay of one JK
A better technique is to use a synchronous design where all the JK are clocked together so the maximum frequency is only limited by the propagation delay of 1 JK.
The circuit appears to be complex in design, however it is easily realised by using state diagrams. The maximum frequency of operation is again roughly calculated by considering the frequency at which the output just changes before the clock in changes. F = 1/ Propagation delay
Q. Explain the working principle of an opto coupler? When it is necessary to block the voltage between one electronic circuit and another, and transfer the signal at the same t
1- Use 4-to-16 decoder and some residue gates to recognize the following functions F1(A,B,C)= S(1,2,4,5,7) F2(A,B,C,D)= S(1,2,4,5,7,10,12,14,15) F3(A,B,C,D,E)= S(1,2,4,5,7,10,12,1
Input Characteristics Transistors can be operated in the switching mode. If base current IB is zero transistor is in an ON state behaves as a switch. If the base cur
oscilloscope probes specification & performance
production of electricity by pressure
Submit a brief report on the selection of two commercially available sensors for the following: • Research and recommend a sensor for a real full size conveyor system of approxima
Q. Sketch a typical circuit for a 2-input, 4-output decoder.
Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4
Why we provide the short circuit and open circuit test in transformer
A series RLC circuit consisting of resistor of 200 ohms, an inductor of 0.214H and a capacitor of unknown value. When this circuit is energized by 240 i) value of capacitor ii) vol
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd