Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
One of the simplest circuits is the asynchronous or ' ripple' counter. Below is shown the circuit diagram of a simple 3 stage ripple counter.
The operation of this circuit is based on the fact that the truth table for the JK flip flop is only valid if the clock waveform is falling, i.e. 1->0. Assume the outputs are all zero, the flip flops will not change until the clock on each flip flop falls. The clock in waveform has just fallen ,since the JKa inputs are logic '1' the device will toggle and the output will invert i.e. Qa=1. Flip flop B will not change because the clock waveform on B has risen (0->1) and these devices only functions on a falling edge. The clock in waveform has fallen again, so Qa toggles again (i.e. Qa =0), this has just produced a falling clock on JKb and Qb toggles (i.e. Qab=1) .The device has just counted from 000-> 001->010.
The circuit is called a ripple counter because the clock pulse is slowly rippling through the JK's, hence asynchronous (Not at the same time!) .The limitations of the asynchronous counter is the speed of operation. A rough formula for the maximum speed is when the clock changes before the output changes i.e. F = 1 / n x propagation delay where n = number of stages, propagation delay of one JK
A better technique is to use a synchronous design where all the JK are clocked together so the maximum frequency is only limited by the propagation delay of 1 JK.
The circuit appears to be complex in design, however it is easily realised by using state diagrams. The maximum frequency of operation is again roughly calculated by considering the frequency at which the output just changes before the clock in changes. F = 1/ Propagation delay
Among copper and mercury which is better conductor of electricity?
Explain the OR Gates - microprocessor? The OR GATE has high or logic 1 output if any of the inputs are high. The output Q is true if input A OR input B is true (or both of t
a. Explain the time division space switching b. Verify the execution complexity of 2048 channel TST switch with 16 TDM links and 128 channels. Let the time slot of space switch
var
star delta drawing with timer
Use of Monitoring and control in nuclear and chemical plants In nuclear and chemical plants, there is generally a combination of control and monitoring taking place. Informatio
Connection of Shunt Capacitors - Across Individual Customers The most appropriate manner of improving PF of the distribution system and thereby reducing line losses is to link
explain measurement of frqueny and phase using cro
Q. Consider the 4-bit R-2R ladder D/A converter with V ref =-10 V. Determine the analog output voltage when the binary input code is 1100. Also, find what reference voltage is to
Two sine waves along with periods of 10 ms and 30 ms are added to generate a single waveform. A spectrum analyzer is utilized to examine the frequency contents of the waveform. Wha
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd