Arithmetic progression (a.p.), Mathematics

Assignment Help:

A series is said to be in Arithmetic Progression (A.P.) if the consecutive numbers in the series differs by a constant value. This constant value is referred to as "common difference". The series in which the consecutive terms increases by a constant quantity, is referred to as an increasing series and if the terms decrease by a constant quantity it is referred to as a decreasing series. The series

                            3, 7, 11, 15, 19, .............

is an example of increasing series, while the one like

                            8, 2, -4, .........

is an example of decreasing series.

In an A.P. the first number is denoted by "a" and the common difference is denoted by "d". If we know the values of a and d, it is quite easy to get the terms of the Arithmetic Progression. In terms of a and d, the consecutive terms of arithmetic progression are

                   a, a + d, a + 2d, a + 3d, ......... a + nd

We observe that the first term is a, the second term is a + d, the third term being a + 2d. The point to note is that for the first term the coefficient of d is zero, for the second term it is one and for the third term it is 2. By observing this pattern can we conclude that the coefficient of nth term is n - 1? Yes, we can. In fact, the nth term is given by

                    Tn  = a + (n - 1)d

Generally the Tn  which is the last term is also denoted by "l" (small alphabet 'l'). That is, l = a + (n - 1)d.

Now let us look at an example.

Example 

If the first term of an A.P. 'a' = 3 and the common difference 'd' = 2, what are the first five terms of the series and what would be the nth term? They are calculated as follows. We know that

                   T1     = a                = 3

                   T2     = a + d           = 3 + 2 = 5

                   T3     = a + 2d         = 3 + 2(2) = 7

                   T4     = a + 3d         = 3 + 3(2) = 9

                   T5     = a + 4d         = 3 + 4(2) = 11

                   :                                          :
                   :                                          :

           l = Tn        = a + (n - 1)d  = 3 + (n - 1)(2)

                                                = 3 + 2n - 2

                                                = 2n + 1


Related Discussions:- Arithmetic progression (a.p.)

What was the total cost of the copies, Mary made 34 copies at the local off...

Mary made 34 copies at the local office supply store. The copies cost $0.06 each. What was the total cost of the copies? Multiply 34 by $0.06 to ?nd out the total cost; 34 × $0

The geometric index or industrial share index, The Geometric Index or Indus...

The Geometric Index or Industrial Share index The Geometric Index or Industrial Share index is an index of 30 selected top industrial companies. This is calculated by taking a

Mathematical sequences, The number of seats in each row can be modeled by t...

The number of seats in each row can be modeled by the formula C_n = 16 + 4n, when n refers to the nth row, and you need 50 rows of seats. (a) Write the sequence for the numb

What is trigonometric ratios, What is Trigonometric Ratios ? Trigonome...

What is Trigonometric Ratios ? Trigonometry, a branch of mathematics, is based on the ratios known as sine, cosine, and tangent. Trigonometric ratios apply only to right trian

High dimensions, List the five most important things you learned about high...

List the five most important things you learned about high dimensions.

Reduction of order - fundamental set of solutions, Given that 2t 2 y′′ ...

Given that 2t 2 y′′ + ty′ - 3 y = 0 Show that this given solution are form a fundamental set of solutions for the differential equation? Solution The two solutions f

What is a set, A set can define as a precise group of distinct objects. Wel...

A set can define as a precise group of distinct objects. Well-defined group means that there be a principle with the help of which it is probable to tell whether a given object rel

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd