Arithmetic progression (a.p.), Mathematics

Assignment Help:

A series is said to be in Arithmetic Progression (A.P.) if the consecutive numbers in the series differs by a constant value. This constant value is referred to as "common difference". The series in which the consecutive terms increases by a constant quantity, is referred to as an increasing series and if the terms decrease by a constant quantity it is referred to as a decreasing series. The series

                            3, 7, 11, 15, 19, .............

is an example of increasing series, while the one like

                            8, 2, -4, .........

is an example of decreasing series.

In an A.P. the first number is denoted by "a" and the common difference is denoted by "d". If we know the values of a and d, it is quite easy to get the terms of the Arithmetic Progression. In terms of a and d, the consecutive terms of arithmetic progression are

                   a, a + d, a + 2d, a + 3d, ......... a + nd

We observe that the first term is a, the second term is a + d, the third term being a + 2d. The point to note is that for the first term the coefficient of d is zero, for the second term it is one and for the third term it is 2. By observing this pattern can we conclude that the coefficient of nth term is n - 1? Yes, we can. In fact, the nth term is given by

                    Tn  = a + (n - 1)d

Generally the Tn  which is the last term is also denoted by "l" (small alphabet 'l'). That is, l = a + (n - 1)d.

Now let us look at an example.

Example 

If the first term of an A.P. 'a' = 3 and the common difference 'd' = 2, what are the first five terms of the series and what would be the nth term? They are calculated as follows. We know that

                   T1     = a                = 3

                   T2     = a + d           = 3 + 2 = 5

                   T3     = a + 2d         = 3 + 2(2) = 7

                   T4     = a + 3d         = 3 + 3(2) = 9

                   T5     = a + 4d         = 3 + 4(2) = 11

                   :                                          :
                   :                                          :

           l = Tn        = a + (n - 1)d  = 3 + (n - 1)(2)

                                                = 3 + 2n - 2

                                                = 2n + 1


Related Discussions:- Arithmetic progression (a.p.)

Use newtons method to find out an approximation, Use Newton's Method to fin...

Use Newton's Method to find out an approximation to the solution to cos x = x which lies in the interval [0,2].  Determine the approximation to six decimal places. Solution

Arc length with vector functions - three dimensional space, Arc Length with...

Arc Length with Vector Functions In this part we will recast an old formula into terms of vector functions.  We wish to find out the length of a vector function, r → (t) =

Fractions, How do you add 7/9 + 6/8 + 3/4

How do you add 7/9 + 6/8 + 3/4

Calculus, I need help with my calculus work

I need help with my calculus work

Math, there is 22 owls . my mom gave me 6 more . how many owls do they have...

there is 22 owls . my mom gave me 6 more . how many owls do they have

Determine series is convergent or divergent by radio test, Determine if the...

Determine if the following series is convergent or divergent by using Radio Test. Solution With this first illustration let's be a little careful and ensure that we h

Constrcut the adjacency matrix, Constrcut the adjacency matrix and the adja...

Constrcut the adjacency matrix and the adjacency lists for the graph G belowr.

Can u please tell me how to solve, a triangle with side lengths in the rati...

a triangle with side lengths in the ratio 3:4:5 is inscribed in a circle of radius 3.what is the area of the triangle.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd