Arithmetic progression (a.p.), Mathematics

Assignment Help:

A series is said to be in Arithmetic Progression (A.P.) if the consecutive numbers in the series differs by a constant value. This constant value is referred to as "common difference". The series in which the consecutive terms increases by a constant quantity, is referred to as an increasing series and if the terms decrease by a constant quantity it is referred to as a decreasing series. The series

                            3, 7, 11, 15, 19, .............

is an example of increasing series, while the one like

                            8, 2, -4, .........

is an example of decreasing series.

In an A.P. the first number is denoted by "a" and the common difference is denoted by "d". If we know the values of a and d, it is quite easy to get the terms of the Arithmetic Progression. In terms of a and d, the consecutive terms of arithmetic progression are

                   a, a + d, a + 2d, a + 3d, ......... a + nd

We observe that the first term is a, the second term is a + d, the third term being a + 2d. The point to note is that for the first term the coefficient of d is zero, for the second term it is one and for the third term it is 2. By observing this pattern can we conclude that the coefficient of nth term is n - 1? Yes, we can. In fact, the nth term is given by

                    Tn  = a + (n - 1)d

Generally the Tn  which is the last term is also denoted by "l" (small alphabet 'l'). That is, l = a + (n - 1)d.

Now let us look at an example.

Example 

If the first term of an A.P. 'a' = 3 and the common difference 'd' = 2, what are the first five terms of the series and what would be the nth term? They are calculated as follows. We know that

                   T1     = a                = 3

                   T2     = a + d           = 3 + 2 = 5

                   T3     = a + 2d         = 3 + 2(2) = 7

                   T4     = a + 3d         = 3 + 3(2) = 9

                   T5     = a + 4d         = 3 + 4(2) = 11

                   :                                          :
                   :                                          :

           l = Tn        = a + (n - 1)d  = 3 + (n - 1)(2)

                                                = 3 + 2n - 2

                                                = 2n + 1


Related Discussions:- Arithmetic progression (a.p.)

Math, how do you add all the Y.AND X UP WITH 3

how do you add all the Y.AND X UP WITH 3

Operation research, discuss the sequencing decision problem for n jobs on t...

discuss the sequencing decision problem for n jobs on two and three machines

Example to understanidng of multiplication, 6-year-old Rahul wasn't able to...

6-year-old Rahul wasn't able to understand multiplication when it was thrust upon him in school. His mother discussed this problem with some of us. On the basis of suggestions that

Differences of squares and other even powers, Differences of Squares (and o...

Differences of Squares (and other even powers) ? A square monomial is a monomial which is the square of another monomial. Here are some examples: 25 is the square of 5 x 2 i

Initial conditions to find system of equations, Solve the subsequent IVP. ...

Solve the subsequent IVP. y′′ + 11y′ + 24 y = 0 y (0) =0  y′ (0)=-7  Solution The characteristic equation is as r 2 +11r + 24 = 0 ( r + 8) ( r + 3) = 0

Evaluate the area of the region, Evaluate the area of the region. a...

Evaluate the area of the region. a. 478 units 2 b. 578 units 2 c. 528 units 2 d. 428 units 2   b. Refer to the diagram to evaluate the area of the shaded

#title., fixed cost of $1400 ,printing cost of .40 cents -each item to sell...

fixed cost of $1400 ,printing cost of .40 cents -each item to sell for $1.05. what is linear cost function, linear revenue function and number of items to be sold to make a profit

Congruence, a) Let n = (abc) 7 . Prove that n ≡ a + b + c (mod 6). b) U...

a) Let n = (abc) 7 . Prove that n ≡ a + b + c (mod 6). b) Use congruences to show that 4|3 2n   - 1 for all integers n ≥ 0.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd