Arithmetic progression (a.p.), Mathematics

Assignment Help:

A series is said to be in Arithmetic Progression (A.P.) if the consecutive numbers in the series differs by a constant value. This constant value is referred to as "common difference". The series in which the consecutive terms increases by a constant quantity, is referred to as an increasing series and if the terms decrease by a constant quantity it is referred to as a decreasing series. The series

                            3, 7, 11, 15, 19, .............

is an example of increasing series, while the one like

                            8, 2, -4, .........

is an example of decreasing series.

In an A.P. the first number is denoted by "a" and the common difference is denoted by "d". If we know the values of a and d, it is quite easy to get the terms of the Arithmetic Progression. In terms of a and d, the consecutive terms of arithmetic progression are

                   a, a + d, a + 2d, a + 3d, ......... a + nd

We observe that the first term is a, the second term is a + d, the third term being a + 2d. The point to note is that for the first term the coefficient of d is zero, for the second term it is one and for the third term it is 2. By observing this pattern can we conclude that the coefficient of nth term is n - 1? Yes, we can. In fact, the nth term is given by

                    Tn  = a + (n - 1)d

Generally the Tn  which is the last term is also denoted by "l" (small alphabet 'l'). That is, l = a + (n - 1)d.

Now let us look at an example.

Example 

If the first term of an A.P. 'a' = 3 and the common difference 'd' = 2, what are the first five terms of the series and what would be the nth term? They are calculated as follows. We know that

                   T1     = a                = 3

                   T2     = a + d           = 3 + 2 = 5

                   T3     = a + 2d         = 3 + 2(2) = 7

                   T4     = a + 3d         = 3 + 3(2) = 9

                   T5     = a + 4d         = 3 + 4(2) = 11

                   :                                          :
                   :                                          :

           l = Tn        = a + (n - 1)d  = 3 + (n - 1)(2)

                                                = 3 + 2n - 2

                                                = 2n + 1


Related Discussions:- Arithmetic progression (a.p.)

Luis runs rate of 11.7 feet per second how far does he run, Luis runs at a ...

Luis runs at a rate of 11.7 feet per second. How far does he run in 5 seconds? You must multiply 11.7 by 5; 11.7 × 5 = 58.5. To multiply decimals, multiply generally, then coun

Problem, La proporción de empleados de una empresa que usan su auto para ir...

La proporción de empleados de una empresa que usan su auto para ir al trabajo es 5:16. Si hay un total de 800 empleados, diga la cantidad de autos que se espera que haya estacionad

Tutor, how can i apply as tutor

how can i apply as tutor

Unit rates with fractions, a math problem that involves the numbers $112 fo...

a math problem that involves the numbers $112 for 8 hours

Determine how many poles are there in the stack, 1. A stack of poles has 22...

1. A stack of poles has 22 poles in the bottom row, 21 poles in the next row, and so on, with 6 poles in the top row. How many poles are there in the stack? 2. In the formula N

Illustration of integration by parts - integration technique, Example of In...

Example of Integration by Parts - Integration techniques Some problems could need us to do integration by parts many times and there is a short hand technique that will permit

Vector function - three dimensional spaces, Vector Function The good wa...

Vector Function The good way to get an idea of what a vector function is and what its graph act like is to look at an instance.  Thus, consider the following vector function.

Volume of solids, find the volume of a rectangular based right pyramid with...

find the volume of a rectangular based right pyramid with its base 18 cm by 24 cm and the slanted edge 39 cm

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd