Arithmetic progression (a.p.), Mathematics

Assignment Help:

A series is said to be in Arithmetic Progression (A.P.) if the consecutive numbers in the series differs by a constant value. This constant value is referred to as "common difference". The series in which the consecutive terms increases by a constant quantity, is referred to as an increasing series and if the terms decrease by a constant quantity it is referred to as a decreasing series. The series

                            3, 7, 11, 15, 19, .............

is an example of increasing series, while the one like

                            8, 2, -4, .........

is an example of decreasing series.

In an A.P. the first number is denoted by "a" and the common difference is denoted by "d". If we know the values of a and d, it is quite easy to get the terms of the Arithmetic Progression. In terms of a and d, the consecutive terms of arithmetic progression are

                   a, a + d, a + 2d, a + 3d, ......... a + nd

We observe that the first term is a, the second term is a + d, the third term being a + 2d. The point to note is that for the first term the coefficient of d is zero, for the second term it is one and for the third term it is 2. By observing this pattern can we conclude that the coefficient of nth term is n - 1? Yes, we can. In fact, the nth term is given by

                    Tn  = a + (n - 1)d

Generally the Tn  which is the last term is also denoted by "l" (small alphabet 'l'). That is, l = a + (n - 1)d.

Now let us look at an example.

Example 

If the first term of an A.P. 'a' = 3 and the common difference 'd' = 2, what are the first five terms of the series and what would be the nth term? They are calculated as follows. We know that

                   T1     = a                = 3

                   T2     = a + d           = 3 + 2 = 5

                   T3     = a + 2d         = 3 + 2(2) = 7

                   T4     = a + 3d         = 3 + 3(2) = 9

                   T5     = a + 4d         = 3 + 4(2) = 11

                   :                                          :
                   :                                          :

           l = Tn        = a + (n - 1)d  = 3 + (n - 1)(2)

                                                = 3 + 2n - 2

                                                = 2n + 1


Related Discussions:- Arithmetic progression (a.p.)

Numertic methods, solve by factorization method; 10x-6y-3z=100, -6x+10y-5z=...

solve by factorization method; 10x-6y-3z=100, -6x+10y-5z=100, -3x-5y+10z=100

Elliptic paraboloid - three dimensional spaces, Elliptic Paraboloid Th...

Elliptic Paraboloid The equation which is given here is the equation of an elliptic paraboloid. x 2 /a 2 + y 2 /b 2 = z/c Like with cylinders this has a cross section

Stakeholders, what is the benefit for stakeholders or disadvantage in a mon...

what is the benefit for stakeholders or disadvantage in a monoply

Explain id amortisation is proper impairment will not arise, If depreciatio...

If depreciation/amortisation is done properly, impairment adjustments will not arise.   Required: Do you agree with the above statement? Critically and fully explain your

Area problem, Area Problem Now It is time to start second kind of inte...

Area Problem Now It is time to start second kind of integral: Definite Integrals.  The area problem is to definite integrals what tangent & rate of change problems are to d

Ellipse, different types of ellipse

different types of ellipse

Union of sets, Union of Sets Venn diagram presenting the union of sets...

Union of Sets Venn diagram presenting the union of sets A and B or A?B = Shaded area is demonstrated below: A ?B = Shaded area

Analyze the dynamic path of pork prices, A well-known simple model, applica...

A well-known simple model, applicable for analysing boom-bust cycles in agriculture, but extendable to analysing boom-bust cycles in many different areas of economics is the hog cy

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd