Arithmetic progression (a.p.), Mathematics

Assignment Help:

A series is said to be in Arithmetic Progression (A.P.) if the consecutive numbers in the series differs by a constant value. This constant value is referred to as "common difference". The series in which the consecutive terms increases by a constant quantity, is referred to as an increasing series and if the terms decrease by a constant quantity it is referred to as a decreasing series. The series

                            3, 7, 11, 15, 19, .............

is an example of increasing series, while the one like

                            8, 2, -4, .........

is an example of decreasing series.

In an A.P. the first number is denoted by "a" and the common difference is denoted by "d". If we know the values of a and d, it is quite easy to get the terms of the Arithmetic Progression. In terms of a and d, the consecutive terms of arithmetic progression are

                   a, a + d, a + 2d, a + 3d, ......... a + nd

We observe that the first term is a, the second term is a + d, the third term being a + 2d. The point to note is that for the first term the coefficient of d is zero, for the second term it is one and for the third term it is 2. By observing this pattern can we conclude that the coefficient of nth term is n - 1? Yes, we can. In fact, the nth term is given by

                    Tn  = a + (n - 1)d

Generally the Tn  which is the last term is also denoted by "l" (small alphabet 'l'). That is, l = a + (n - 1)d.

Now let us look at an example.

Example 

If the first term of an A.P. 'a' = 3 and the common difference 'd' = 2, what are the first five terms of the series and what would be the nth term? They are calculated as follows. We know that

                   T1     = a                = 3

                   T2     = a + d           = 3 + 2 = 5

                   T3     = a + 2d         = 3 + 2(2) = 7

                   T4     = a + 3d         = 3 + 3(2) = 9

                   T5     = a + 4d         = 3 + 4(2) = 11

                   :                                          :
                   :                                          :

           l = Tn        = a + (n - 1)d  = 3 + (n - 1)(2)

                                                = 3 + 2n - 2

                                                = 2n + 1


Related Discussions:- Arithmetic progression (a.p.)

#title.heat loss in a cylindrical pipe., briefly explain how the famous equ...

briefly explain how the famous equation for the loss of heat in a cylindrical pipe is derived

Bottleneck for each product, A company makes 2 products, Product A and Prod...

A company makes 2 products, Product A and Product B. The product characteristics are shown in the following table. Product A B

On income and return from shares, a company declares a semu annual dividend...

a company declares a semu annual dividend on 5%.a man has 400 shares of the company.if his annual income from the share is rs 1000 find the face value of each share?

How to solve inequalities, How to Solve Inequalities ? Now that you hav...

How to Solve Inequalities ? Now that you have learned so much about solving equations, you're ready to solve inequalities. You might think that since an equation looks like

Finite population correction factor or fpcf), Finite Population Correction ...

Finite Population Correction Factor Or Fpcf) If a specified population is relatively of small size and sample size is more than 5 percent of the population then the standard er

Circls, in a given figure a,b,c and d are points on a circle such that ABC ...

in a given figure a,b,c and d are points on a circle such that ABC =40 and DAB= 60 find the measure of DBA

How to simplifying square roots, How to Simplifying Square Roots ? To ...

How to Simplifying Square Roots ? To simplify square roots, 1. Factor the radicand into primes. 2. Circle each pair of like numbers. 3. For each pair of like numbers, place

Determine the eigenvalues and eigenvectors of the matrix, Determine the eig...

Determine the eigenvalues and eigenvectors of the subsequent matrix. Solution : The first thing that we require to do is determine the eigen-values. It means we require

Calculus , Mean, variance, skewness and kurtosis of a probability density f...

Mean, variance, skewness and kurtosis of a probability density function f(r)that has a distribution of a passive scalar filed in a stationary isotropic turbulence for initial condi

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd