Arithmetic progression (a.p.), Mathematics

Assignment Help:

A series is said to be in Arithmetic Progression (A.P.) if the consecutive numbers in the series differs by a constant value. This constant value is referred to as "common difference". The series in which the consecutive terms increases by a constant quantity, is referred to as an increasing series and if the terms decrease by a constant quantity it is referred to as a decreasing series. The series

                            3, 7, 11, 15, 19, .............

is an example of increasing series, while the one like

                            8, 2, -4, .........

is an example of decreasing series.

In an A.P. the first number is denoted by "a" and the common difference is denoted by "d". If we know the values of a and d, it is quite easy to get the terms of the Arithmetic Progression. In terms of a and d, the consecutive terms of arithmetic progression are

                   a, a + d, a + 2d, a + 3d, ......... a + nd

We observe that the first term is a, the second term is a + d, the third term being a + 2d. The point to note is that for the first term the coefficient of d is zero, for the second term it is one and for the third term it is 2. By observing this pattern can we conclude that the coefficient of nth term is n - 1? Yes, we can. In fact, the nth term is given by

                    Tn  = a + (n - 1)d

Generally the Tn  which is the last term is also denoted by "l" (small alphabet 'l'). That is, l = a + (n - 1)d.

Now let us look at an example.

Example 

If the first term of an A.P. 'a' = 3 and the common difference 'd' = 2, what are the first five terms of the series and what would be the nth term? They are calculated as follows. We know that

                   T1     = a                = 3

                   T2     = a + d           = 3 + 2 = 5

                   T3     = a + 2d         = 3 + 2(2) = 7

                   T4     = a + 3d         = 3 + 3(2) = 9

                   T5     = a + 4d         = 3 + 4(2) = 11

                   :                                          :
                   :                                          :

           l = Tn        = a + (n - 1)d  = 3 + (n - 1)(2)

                                                = 3 + 2n - 2

                                                = 2n + 1


Related Discussions:- Arithmetic progression (a.p.)

Intrgers, how to evaluate the sums

how to evaluate the sums

Geometry, how you know that your first quadrilateral is an isosceles trapez...

how you know that your first quadrilateral is an isosceles trapezoid

Probability, One coin is tossed thrice. what will be the probability of get...

One coin is tossed thrice. what will be the probability of getting neither 3 heads nor 3 tails

Example of imaginary numbers, Example of Imaginary Numbers: Example 1...

Example of Imaginary Numbers: Example 1: Multiply √-2  and √-32 Solution: (√-2)( √-32) = (√2i)( √32i) =√64 (-1) =8 (-1) =-8 Example 2: Divid

Evaluate performance of mental arithmetic maths, E 1) Try the two activitie...

E 1) Try the two activities detailed above with a few children around you Evaluate whether they really helped to improve the children's performance of mental arithmetic. Anot

Marvin helping teachers plan trip what is the minimum no, Marvin is helping...

Marvin is helping his teachers plan a ?eld trip. There are 125 people going on the ?eld trip and each school bus holds 48 people. What is the minimum number of school buses they wi

Rules of game theory, Rules Of Game Theory i.   The number of competito...

Rules Of Game Theory i.   The number of competitors is finite ii.   There is conflict of interests among the participants iii.  Each of these participants has available t

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd