Arithmetic progression (a.p.), Mathematics

Assignment Help:

A series is said to be in Arithmetic Progression (A.P.) if the consecutive numbers in the series differs by a constant value. This constant value is referred to as "common difference". The series in which the consecutive terms increases by a constant quantity, is referred to as an increasing series and if the terms decrease by a constant quantity it is referred to as a decreasing series. The series

                            3, 7, 11, 15, 19, .............

is an example of increasing series, while the one like

                            8, 2, -4, .........

is an example of decreasing series.

In an A.P. the first number is denoted by "a" and the common difference is denoted by "d". If we know the values of a and d, it is quite easy to get the terms of the Arithmetic Progression. In terms of a and d, the consecutive terms of arithmetic progression are

                   a, a + d, a + 2d, a + 3d, ......... a + nd

We observe that the first term is a, the second term is a + d, the third term being a + 2d. The point to note is that for the first term the coefficient of d is zero, for the second term it is one and for the third term it is 2. By observing this pattern can we conclude that the coefficient of nth term is n - 1? Yes, we can. In fact, the nth term is given by

                    Tn  = a + (n - 1)d

Generally the Tn  which is the last term is also denoted by "l" (small alphabet 'l'). That is, l = a + (n - 1)d.

Now let us look at an example.

Example 

If the first term of an A.P. 'a' = 3 and the common difference 'd' = 2, what are the first five terms of the series and what would be the nth term? They are calculated as follows. We know that

                   T1     = a                = 3

                   T2     = a + d           = 3 + 2 = 5

                   T3     = a + 2d         = 3 + 2(2) = 7

                   T4     = a + 3d         = 3 + 3(2) = 9

                   T5     = a + 4d         = 3 + 4(2) = 11

                   :                                          :
                   :                                          :

           l = Tn        = a + (n - 1)d  = 3 + (n - 1)(2)

                                                = 3 + 2n - 2

                                                = 2n + 1


Related Discussions:- Arithmetic progression (a.p.)

Logarithms, find any integer from 1-128 on a logarithmic scale

find any integer from 1-128 on a logarithmic scale

Nonhomogeneous differential equations, Let's here start thinking regarding ...

Let's here start thinking regarding that how to solve nonhomogeneous differential equations.  A second order, linear non-homogeneous differential equation is as y′′ + p (t) y′ +

How much interest will she have made after 4 years, Celine deposited $505 i...

Celine deposited $505 into her savings account. If the interest rate of the account is 5% per year, how much interest will she have made after 4 years? Use the formula F = 9/5

Fundamental theorem of calculus, Fundamental Theorem of Calculus, Part II ...

Fundamental Theorem of Calculus, Part II Assume f ( x ) is a continuous function on [a,b] and also assume that F ( x ) is any anti- derivative for f ( x ) . Then,

Differential equation, Find the normalized differential equation which has ...

Find the normalized differential equation which has {x, xex} as its fundamental set

Which of the subsequent binomials could represent the length, The area of a...

The area of a rectangle is represented through the trinomial: x 2 + x - 12. Which of the subsequent binomials could represent the length and width? Because the formula for the

Operation research, interestind topic in operation research for doing proje...

interestind topic in operation research for doing project for msc mathematics

Discount, outdoor grill- regular price:$360 discount:33 1/3%

outdoor grill- regular price:$360 discount:33 1/3%

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd