Arithmetic progression (a.p.), Mathematics

Assignment Help:

A series is said to be in Arithmetic Progression (A.P.) if the consecutive numbers in the series differs by a constant value. This constant value is referred to as "common difference". The series in which the consecutive terms increases by a constant quantity, is referred to as an increasing series and if the terms decrease by a constant quantity it is referred to as a decreasing series. The series

                            3, 7, 11, 15, 19, .............

is an example of increasing series, while the one like

                            8, 2, -4, .........

is an example of decreasing series.

In an A.P. the first number is denoted by "a" and the common difference is denoted by "d". If we know the values of a and d, it is quite easy to get the terms of the Arithmetic Progression. In terms of a and d, the consecutive terms of arithmetic progression are

                   a, a + d, a + 2d, a + 3d, ......... a + nd

We observe that the first term is a, the second term is a + d, the third term being a + 2d. The point to note is that for the first term the coefficient of d is zero, for the second term it is one and for the third term it is 2. By observing this pattern can we conclude that the coefficient of nth term is n - 1? Yes, we can. In fact, the nth term is given by

                    Tn  = a + (n - 1)d

Generally the Tn  which is the last term is also denoted by "l" (small alphabet 'l'). That is, l = a + (n - 1)d.

Now let us look at an example.

Example 

If the first term of an A.P. 'a' = 3 and the common difference 'd' = 2, what are the first five terms of the series and what would be the nth term? They are calculated as follows. We know that

                   T1     = a                = 3

                   T2     = a + d           = 3 + 2 = 5

                   T3     = a + 2d         = 3 + 2(2) = 7

                   T4     = a + 3d         = 3 + 3(2) = 9

                   T5     = a + 4d         = 3 + 4(2) = 11

                   :                                          :
                   :                                          :

           l = Tn        = a + (n - 1)d  = 3 + (n - 1)(2)

                                                = 3 + 2n - 2

                                                = 2n + 1


Related Discussions:- Arithmetic progression (a.p.)

Operation research, Advantages and disadvantages of operation researchs

Advantages and disadvantages of operation researchs

Probability transition matrices or brand switching, Define the Probability ...

Define the Probability Transition Matrices or Brand switching.

Integral test- harmonic series, Integral Test- Harmonic Series In ha...

Integral Test- Harmonic Series In harmonic series discussion we said that the harmonic series was a divergent series.  It is now time to demonstrate that statement.  This pr

Geometry help, A painter leans a 10-foot ladder against the house she is to...

A painter leans a 10-foot ladder against the house she is to paint. The foot of the ladder is 3 feet from the house. How far above the ground does the ladder touch the house? Appro

Determine the equation of the tangent line, Determine the equation of the t...

Determine the equation of the tangent line to r = 3 + 8 sinθ at θ = Π/6. Solution We'll first need the subsequent derivative. dr/dθ = 8 cosθ The formula for the deriv

Analyze the dynamic path - difference equation, One of the well-known class...

One of the well-known class of models that involve a simple difference equation are models of mean reversion. These models typically take the form yt+1 - yt = -a(yt - μ)where 0

Parallelograns, Find x and y in each paarallelogram.

Find x and y in each paarallelogram.

Alegbra, what iz the value of x if y=56

what iz the value of x if y=56

Find quadratic equation using the quadratic formula, Find quadratic equatio...

Find quadratic equation using the Quadratic Formula: Solve the subsequent quadratic equation using the Quadratic Formula. 4x 2 + 2 = x 2 - 7x: Solution: Step 1.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd