Arithmetic progression (a.p.), Mathematics

Assignment Help:

A series is said to be in Arithmetic Progression (A.P.) if the consecutive numbers in the series differs by a constant value. This constant value is referred to as "common difference". The series in which the consecutive terms increases by a constant quantity, is referred to as an increasing series and if the terms decrease by a constant quantity it is referred to as a decreasing series. The series

                            3, 7, 11, 15, 19, .............

is an example of increasing series, while the one like

                            8, 2, -4, .........

is an example of decreasing series.

In an A.P. the first number is denoted by "a" and the common difference is denoted by "d". If we know the values of a and d, it is quite easy to get the terms of the Arithmetic Progression. In terms of a and d, the consecutive terms of arithmetic progression are

                   a, a + d, a + 2d, a + 3d, ......... a + nd

We observe that the first term is a, the second term is a + d, the third term being a + 2d. The point to note is that for the first term the coefficient of d is zero, for the second term it is one and for the third term it is 2. By observing this pattern can we conclude that the coefficient of nth term is n - 1? Yes, we can. In fact, the nth term is given by

                    Tn  = a + (n - 1)d

Generally the Tn  which is the last term is also denoted by "l" (small alphabet 'l'). That is, l = a + (n - 1)d.

Now let us look at an example.

Example 

If the first term of an A.P. 'a' = 3 and the common difference 'd' = 2, what are the first five terms of the series and what would be the nth term? They are calculated as follows. We know that

                   T1     = a                = 3

                   T2     = a + d           = 3 + 2 = 5

                   T3     = a + 2d         = 3 + 2(2) = 7

                   T4     = a + 3d         = 3 + 3(2) = 9

                   T5     = a + 4d         = 3 + 4(2) = 11

                   :                                          :
                   :                                          :

           l = Tn        = a + (n - 1)d  = 3 + (n - 1)(2)

                                                = 3 + 2n - 2

                                                = 2n + 1


Related Discussions:- Arithmetic progression (a.p.)

If tan2x.tan7x=1 , tan9x = (tan7x + tan2x)/(1 - tan7x*tan2x) here its give...

tan9x = (tan7x + tan2x)/(1 - tan7x*tan2x) here its given 1 - tan2x*tan7x= 0 implies tan9x = infinity since tan9x = (3tan3x - tan^3(3x))/(1 - 3tan^2 (3x)) = infinity implies

Find the 20th term of arithmetic progressions, Find the 20 th term from th...

Find the 20 th term from the end of the AP 3, 8, 13........253. Ans:    3, 8, 13 .............. 253 Last term = 253 a20 from end = l - (n-1)d 253 - ( 20-1) 5 253

Fractions, A car travels 283 1/km in 4 2/3 hours .How far does it go in 1 h...

A car travels 283 1/km in 4 2/3 hours .How far does it go in 1 hour?

Solid mensuration, Find the are of the rectilinear.if it is the difference ...

Find the are of the rectilinear.if it is the difference between to isosceles trapezoid whose corrsponding sides are parallel.

What is a set, A set can define as a precise group of distinct objects. Wel...

A set can define as a precise group of distinct objects. Well-defined group means that there be a principle with the help of which it is probable to tell whether a given object rel

How many total inches of wood does he have, Eduardo is merging two 6-inch p...

Eduardo is merging two 6-inch pieces of wood with a piece in which measures 4 inches. How many total inches of wood does he have? This problem translates to the expression 6 ×

Describe common phrases to represent math operations, Describe Common Phras...

Describe Common Phrases to Represent Math Operations? The table below shows the common phrases used in word problems to represent addition, subtraction, multiplication, and div

Find the polynomial zeros , If two zeros of the polynomial f(x) = x 4 - 6x...

If two zeros of the polynomial f(x) = x 4 - 6x 3 - 26x 2 + 138x - 35 are 2 ± √3.Find the other zeros.     (Ans:7, -5) Ans : Let the two zeros are 2 +√3 and 2 - √3 Sum of

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd