Area under curve, C/C++ Programming

Assignment Help:
Write a program to find the area under the curve y = f(x) between x = a and x = b, integrate y = f(x) between the limits of a and b.

Related Discussions:- Area under curve

Car rental project, I need a project on car rental system using c programmi...

I need a project on car rental system using c programming only of college level

Software crisis, defining software crisis As the technology changes ra...

defining software crisis As the technology changes rapidly the requirement for the users' change, to part the growing demand of the user for trade,  business, and personal

Define global variable in c++ program, Define global variable in c++ progra...

Define global variable in c++ program: How to define a global variable and need of global variable in c++ program. int main() {    int m=20;    clrscr();    for

Masm procedure to perform letter case conversion, Assignment:  write a C pr...

Assignment:  write a C program and a MASM procedure.  The C program calls the MASM procedure to perform letter case conversion. Text sections covered:  12.1 to 12.3.1 Write a

Algorithm and flowchart, an algorithm and flowchart of finding the product ...

an algorithm and flowchart of finding the product of any two numbers

Explain about the variables in c language, Explain about the Variables in c...

Explain about the Variables in c language? The Variable is an identifier that is used to represent some specified kind of information within a designated portion of the program

Derivatives and symbolic math, #Hi, I''m planning to derive the escape velo...

#Hi, I''m planning to derive the escape velocity through C++. I would just like to know if it''s possible to differentiate symbolic functions? Do I need to download libraries,etc?

Create cpp code for identify objects and their relationships, You are setti...

You are setting up an information system for a DVD Rental Company called Box office. The new system need to hold information about customers and DVDs rentals, payments and fines. C

If/else statement, to compute the net pay of an emplyee, given his/her pay ...

to compute the net pay of an emplyee, given his/her pay rate, number of hours and tax rate

diana

9/4/2012 4:20:01 AM

#include
float start_point, /* GLOBAL VARIABLES */
end_point,
total_area;
int numtraps;
main( )
{
void input(void);
float find_area(float a,float b,int n); /* prototype */
print("AREA UNDER A CURVE");
input( );
total_area = find_area(start_point, end_point, numtraps);
printf("TOTAL AREA = %f", total_area);
}
void input(void)
{
printf("\n Enter lower limit:");
scanf("%f", &start_point);
printf("Enter upper limit:");
scanf("%f", &end_point);
printf("Enter number of trapezoids:");
scanf("%d", &numtraps);
}
float find_area(float a, float b, int n)
{
floatbase, lower, h1, h2; /* LOCAL VARIABLES */float function_x(float x); /* prototype */float trap_area(float h1,float h2,floatbase);/*prototype*/base = (b-1)/n;
lower = a;
for(lower =a; lower <= b-base; lower = lower + base)
{
h1 = function_x(lower);
h1 = function_x(lower + base);
total_area += trap_area(h1, h2, base);
}
return(total_area);
float trap_area(float height_1,float height_2,floatbase)
{
float area; /* LOCAL VARIABLE */
area = 0.5 * (height_1 + height_2) * base;
return(area);
}
float function_x(float x)
{
/* F(X) = X * X + 1 */return(x*x + 1);
}

Output
AREA UNDER A CURVE
Enter lower limit: 0
Enter upper limit: 3
Enter number of trapezoids: 30
TOTAL AREA = 12.005000
AREA UNDER A CURVE
Enter lower limit: 0
Enter upper limit: 3
Enter number of trapezoids: 100
TOTAL AREA = 12.000438

Solution in java ::

// hackerx sasi kamaraj college of engineering and technology 2910007 java Program


//The answer to be precise... although the type was a double, it rounds off the answer. Any help would be //appreciated...
//java code: 1. :: try this or the another one below this one
//Program code ::

public class Reimann
{
private static double integral(String s, double[] descriptors, double lb, double ub)
{

double area = 0; // Area of the rectangle
double sumOfArea = 0; // Sum of the area of the rectangles
double oldSumOfArea = 0;
double width = ub - lb;
boolean firstPass = true;

while ( (Math.abs((oldSumOfArea - sumOfArea) / sumOfArea) > .0001) || firstPass )
{

System.out.println((Math.abs((oldSumOfArea - sumOfArea) / sumOfArea) > .0001) || firstPass);
if (s.equals("poly"))
{
for (int i = 1; i <= ((ub - lb) / width); i++) // represents # of rectangles
{
for (int j = 0; j < descriptors.length; j++) // Goes through all the coefficients
{
area = width * descriptors[j] * Math.pow ( (double)( (i * width + lb + (i -1.0) * width + lb) / 2.0 ), j);
/*Above code computes area of each rectangle */

sumOfArea += area;

}
}
}
width = width / 2;
firstPass = false;
oldSumOfArea = sumOfArea;
}
return sumOfArea;
}

/*private static void runMyTests()
{
assert ( integral() <= 48.00001 ) && ( integral() >= 47.99999 );
}*/

public static void main (String [] args)
{

double lb = Double.parseDouble(args[args.length -2]);
double ub = Double.parseDouble(args[args.length -1]);

double[] coefficients = new double[args.length - 3];

if (args[0].equals("poly"))
{
for (int i = 1; i < args.length - 2; i++)
{
coefficients[i-1] = Double.parseDouble(args[i]);
}

System.out.println(integral("poly", coefficients, lb, ub));
}
}
}



Java Program 2 ::

public class Riemann
{
private static double integral(String s, double[] descriptors, double lb, double ub)
{

double area = 0; // Area of the rectangle
double sumOfArea = 0; // Sum of the area of the rectangles
double oldSumOfArea = 0;
double width = ub - lb;
boolean firstPass = true;

while ( (Math.abs((oldSumOfArea - sumOfArea) / sumOfArea) > .0001) || firstPass )
{

System.out.println((Math.abs((oldSumOfArea - sumOfArea) / sumOfArea) > .0001) || firstPass);
if (s.equals("poly")) // Statement for polynomial
{
for (int i = 1; i <= ((ub - lb) / width); i++) // represents # of rectangles
{
for (int j = 0; j < descriptors.length; j++) // Goes through all the coefficients
{
area = width * descriptors[j] * Math.pow ( (double)( (i * width + lb + (i -1.0) * width + lb) / 2.0 ), j);
/*Above code computes area of each rectangle */

sumOfArea += area;

}
}
}

else if (s.equals("sin")) // Statement for sin
{
for (int i = 1; i <= ((ub - lb) / width); i++) // represents # of rectangles
{
for (int j = 0; j < descriptors.length; j++) // Goes through all the coefficients
{
area = width * descriptors[j] * Math.sin(Math.toRadians(( (double)( (i * width + lb + (i -1.0) * width + lb) / 2.0 ))));
/*Above code computes area of each rectangle */

sumOfArea += area;

}
}
}

else if (s.equals("cos")) // Statement for cos
{
for (int i = 1; i <= ((ub - lb) / width); i++) // represents # of rectangles
{
for (int j = 0; j < descriptors.length; j++) // Goes through all the coefficients
{
area = width * descriptors[j] * Math.cos(Math.toRadians(( (double)( (i * width + lb + (i -1.0) * width + lb) / 2.0 ))));
/*Above code computes area of each rectangle */

sumOfArea += area;

}
}
}

width = width / 2;
firstPass = false;
oldSumOfArea = sumOfArea;
}

return sumOfArea;
}

/*private static void runMyTests()
{
assert ( integral() <= 48.00001 ) && ( integral() >= 47.99999 );
}*/

public static void main (String [] args)
{
double lb = Double.parseDouble(args[args.length -2]);
double ub = Double.parseDouble(args[args.length -1]);

double[] coefficients = new double[args.length - 3];

if (args[0].equals("poly"))
{
for (int i = 1; i < args.length - 2; i++)
{
coefficients[i-1] = Double.parseDouble(args[i]);
}

System.out.println(integral("poly", coefficients, lb, ub));
}

else if (args[0].equals("sin"))
{
for (int i = 1; i < args.length - 2; i++)
{
coefficients[i-1] = Double.parseDouble(args[i]);
}

System.out.println(integral("sin", coefficients, lb, ub));
}

else if (args[0].equals("cos"))
{
for (int i = 1; i < args.length - 2; i++)
{
coefficients[i-1] = Double.parseDouble(args[i]);
}

System.out.println(integral("cos", coefficients, lb, ub));
}
}
}



Question ::
Area Under Curve

diana

9/4/2012 4:20:21 AM

#include
float start_point, /* GLOBAL VARIABLES */
end_point,
total_area;
int numtraps;
main( )
{
void input(void);
float find_area(float a,float b,int n); /* prototype */
print("AREA UNDER A CURVE");
input( );
total_area = find_area(start_point, end_point, numtraps);
printf("TOTAL AREA = %f", total_area);
}
void input(void)
{
printf("\n Enter lower limit:");
scanf("%f", &start_point);
printf("Enter upper limit:");
scanf("%f", &end_point);
printf("Enter number of trapezoids:");
scanf("%d", &numtraps);
}
float find_area(float a, float b, int n)
{
floatbase, lower, h1, h2; /* LOCAL VARIABLES */float function_x(float x); /* prototype */float trap_area(float h1,float h2,floatbase);/*prototype*/base = (b-1)/n;
lower = a;
for(lower =a; lower <= b-base; lower = lower + base)
{
h1 = function_x(lower);
h1 = function_x(lower + base);
total_area += trap_area(h1, h2, base);
}
return(total_area);
float trap_area(float height_1,float height_2,floatbase)
{
float area; /* LOCAL VARIABLE */
area = 0.5 * (height_1 + height_2) * base;
return(area);
}
float function_x(float x)
{
/* F(X) = X * X + 1 */return(x*x + 1);
}

Output
AREA UNDER A CURVE
Enter lower limit: 0
Enter upper limit: 3
Enter number of trapezoids: 30
TOTAL AREA = 12.005000
AREA UNDER A CURVE
Enter lower limit: 0
Enter upper limit: 3
Enter number of trapezoids: 100
TOTAL AREA = 12.000438

Solution in java ::

// hackerx sasi kamaraj college of engineering and technology 2910007 java Program


//The answer to be precise... although the type was a double, it rounds off the answer. Any help would be //appreciated...
//java code: 1. :: try this or the another one below this one
//Program code ::

public class Reimann
{
private static double integral(String s, double[] descriptors, double lb, double ub)
{

double area = 0; // Area of the rectangle
double sumOfArea = 0; // Sum of the area of the rectangles
double oldSumOfArea = 0;
double width = ub - lb;
boolean firstPass = true;

while ( (Math.abs((oldSumOfArea - sumOfArea) / sumOfArea) > .0001) || firstPass )
{

System.out.println((Math.abs((oldSumOfArea - sumOfArea) / sumOfArea) > .0001) || firstPass);
if (s.equals("poly"))
{
for (int i = 1; i <= ((ub - lb) / width); i++) // represents # of rectangles
{
for (int j = 0; j < descriptors.length; j++) // Goes through all the coefficients
{
area = width * descriptors[j] * Math.pow ( (double)( (i * width + lb + (i -1.0) * width + lb) / 2.0 ), j);
/*Above code computes area of each rectangle */

sumOfArea += area;

}
}
}
width = width / 2;
firstPass = false;
oldSumOfArea = sumOfArea;
}
return sumOfArea;
}

/*private static void runMyTests()
{
assert ( integral() <= 48.00001 ) && ( integral() >= 47.99999 );
}*/

public static void main (String [] args)
{

double lb = Double.parseDouble(args[args.length -2]);
double ub = Double.parseDouble(args[args.length -1]);

double[] coefficients = new double[args.length - 3];

if (args[0].equals("poly"))
{
for (int i = 1; i < args.length - 2; i++)
{
coefficients[i-1] = Double.parseDouble(args[i]);
}

System.out.println(integral("poly", coefficients, lb, ub));
}
}
}



Java Program 2 ::

public class Riemann
{
private static double integral(String s, double[] descriptors, double lb, double ub)
{

double area = 0; // Area of the rectangle
double sumOfArea = 0; // Sum of the area of the rectangles
double oldSumOfArea = 0;
double width = ub - lb;
boolean firstPass = true;

while ( (Math.abs((oldSumOfArea - sumOfArea) / sumOfArea) > .0001) || firstPass )
{

System.out.println((Math.abs((oldSumOfArea - sumOfArea) / sumOfArea) > .0001) || firstPass);
if (s.equals("poly")) // Statement for polynomial
{
for (int i = 1; i <= ((ub - lb) / width); i++) // represents # of rectangles
{
for (int j = 0; j < descriptors.length; j++) // Goes through all the coefficients
{
area = width * descriptors[j] * Math.pow ( (double)( (i * width + lb + (i -1.0) * width + lb) / 2.0 ), j);
/*Above code computes area of each rectangle */

sumOfArea += area;

}
}
}

else if (s.equals("sin")) // Statement for sin
{
for (int i = 1; i <= ((ub - lb) / width); i++) // represents # of rectangles
{
for (int j = 0; j < descriptors.length; j++) // Goes through all the coefficients
{
area = width * descriptors[j] * Math.sin(Math.toRadians(( (double)( (i * width + lb + (i -1.0) * width + lb) / 2.0 ))));
/*Above code computes area of each rectangle */

sumOfArea += area;

}
}
}

else if (s.equals("cos")) // Statement for cos
{
for (int i = 1; i <= ((ub - lb) / width); i++) // represents # of rectangles
{
for (int j = 0; j < descriptors.length; j++) // Goes through all the coefficients
{
area = width * descriptors[j] * Math.cos(Math.toRadians(( (double)( (i * width + lb + (i -1.0) * width + lb) / 2.0 ))));
/*Above code computes area of each rectangle */

sumOfArea += area;

}
}
}

width = width / 2;
firstPass = false;
oldSumOfArea = sumOfArea;
}

return sumOfArea;
}

/*private static void runMyTests()
{
assert ( integral() <= 48.00001 ) && ( integral() >= 47.99999 );
}*/

public static void main (String [] args)
{
double lb = Double.parseDouble(args[args.length -2]);
double ub = Double.parseDouble(args[args.length -1]);

double[] coefficients = new double[args.length - 3];

if (args[0].equals("poly"))
{
for (int i = 1; i < args.length - 2; i++)
{
coefficients[i-1] = Double.parseDouble(args[i]);
}

System.out.println(integral("poly", coefficients, lb, ub));
}

else if (args[0].equals("sin"))
{
for (int i = 1; i < args.length - 2; i++)
{
coefficients[i-1] = Double.parseDouble(args[i]);
}

System.out.println(integral("sin", coefficients, lb, ub));
}

else if (args[0].equals("cos"))
{
for (int i = 1; i < args.length - 2; i++)
{
coefficients[i-1] = Double.parseDouble(args[i]);
}

System.out.println(integral("cos", coefficients, lb, ub));
}
}
}



Question ::
Area Under Curve

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd