Area between two curves, Mathematics

Assignment Help:

Area between Two Curves

We'll start with the formula for finding the area among y = f(x) and y = g(x) on the interval [a,b].  We will also suppose that f(x) ≥ g(x) on [a,b].

Now we will precede much as we did while we looked that the Area Problem in the Integrals section. We will initially divide up the interval in n equal subintervals all with length,

Δx = (b -a)/n

After that, pick a point in all subinterval, xi*, and we can then use rectangles on each interval as given here,

2498_Area between Two Curves.png

The height of each of these rectangles is specified by,

f(xi*) - g(xi*)

and then the area of each rectangle is,

(f(xi*) - g(xi*)) Δx

Therefore, the area in between the two curves here is,

A ≈ 1189_Area between Two Curves 1.png(f(xi*) - g(xi*)) Δx

So exact area is,

A ≈limn→∞  1189_Area between Two Curves 1.png      (f(xi*) - g(xi*)) Δx

Then, recalling the definition of the definite integral it is nothing more than,

A = ab f(x) - g(x) dx

The formula beyond will work given the two functions are in the form y = f(x) and y = g(x).  Though, not all functions are in this form. At times we will be forced to work along with functions in the form among x = f(y) and x = g(y) on the interval [c,d] (an interval of y values...)

While this happens the derivation is the same Firstly we will begin by assuming that f(y) ≥ g(y) on [c,d]. We can after that divide up the interval in equal subintervals and build rectangles on each of such intervals. Now there is a sketch of above situation.

915_Area between Two Curves 2.png

Subsequent the work from above, we'll arrive at the subsequent for the area,

A = cd f(y) - g(y) dy

Therefore, regardless of the form such the functions are in we use fundamentally similar formula.


Related Discussions:- Area between two curves

Differential equation, Question: In the interest of saving up enough mo...

Question: In the interest of saving up enough money for retirement, you have created a bank account to store a  sum of money. Compound interest on  this account is accumulated

Finding the LCM, what is the LCM of 18, 56 and 104 show working

what is the LCM of 18, 56 and 104 show working

Practical geometry, Ask question draw a line parallel to given line xy at a...

Ask question draw a line parallel to given line xy at a distance of 5cm from it #Minimum 100 words accepted#

Find the area of shaded region of circle of radius, Find the area of shaded...

Find the area of shaded region of circle of radius =7cm, if ∠AOB=70 o , ∠COD=50 o and ∠EOF=60 o . (Ans:77cm 2 ) Ans:    Ar( Sector AOB + Sector COD + Sector OEF) =  7

Solve sin (3t ) = 2 trig function, Solve sin (3t ) = 2 . Solution T...

Solve sin (3t ) = 2 . Solution This example is designed to remind you of certain properties about sine and cosine.  Recall that -1 ≤ sin (θ ) ≤ 1 and -1 ≤ cos(θ ) ≤ 1 .  Th

Find the circumference of a circle, Find the circumference of a circle whos...

Find the circumference of a circle whose area is 16 times the area of the circle with diameter 7cm            (Ans: 88cm) Ans:     Π R 2 = 16 Π  r 2 R 2 = 16 r 2

Linear Equations of Parallel Lines, A line has the equation 2y=-3x+1. Find...

A line has the equation 2y=-3x+1. Find an equation of a line parallel to this line that has a y-intercept of -2.

Geometry, the figure is a rectangle with angle y=60. Find angle x

the figure is a rectangle with angle y=60. Find angle x

Probability, joey asked 30 randomly selected students if they drank milk, j...

joey asked 30 randomly selected students if they drank milk, juice, or bottled water with their lunch. He found that 9 drank milk, 16 drank juice, and 5 drank bottled water. If the

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd