Area between two curves, Mathematics

Assignment Help:

Area between Two Curves

We'll start with the formula for finding the area among y = f(x) and y = g(x) on the interval [a,b].  We will also suppose that f(x) ≥ g(x) on [a,b].

Now we will precede much as we did while we looked that the Area Problem in the Integrals section. We will initially divide up the interval in n equal subintervals all with length,

Δx = (b -a)/n

After that, pick a point in all subinterval, xi*, and we can then use rectangles on each interval as given here,

2498_Area between Two Curves.png

The height of each of these rectangles is specified by,

f(xi*) - g(xi*)

and then the area of each rectangle is,

(f(xi*) - g(xi*)) Δx

Therefore, the area in between the two curves here is,

A ≈ 1189_Area between Two Curves 1.png(f(xi*) - g(xi*)) Δx

So exact area is,

A ≈limn→∞  1189_Area between Two Curves 1.png      (f(xi*) - g(xi*)) Δx

Then, recalling the definition of the definite integral it is nothing more than,

A = ab f(x) - g(x) dx

The formula beyond will work given the two functions are in the form y = f(x) and y = g(x).  Though, not all functions are in this form. At times we will be forced to work along with functions in the form among x = f(y) and x = g(y) on the interval [c,d] (an interval of y values...)

While this happens the derivation is the same Firstly we will begin by assuming that f(y) ≥ g(y) on [c,d]. We can after that divide up the interval in equal subintervals and build rectangles on each of such intervals. Now there is a sketch of above situation.

915_Area between Two Curves 2.png

Subsequent the work from above, we'll arrive at the subsequent for the area,

A = cd f(y) - g(y) dy

Therefore, regardless of the form such the functions are in we use fundamentally similar formula.


Related Discussions:- Area between two curves

Analalitic geometry, 1. Write down the canonical equations of the line pass...

1. Write down the canonical equations of the line passing through the point A(2,3, 4) and being parallel to the vector q ={5,0,-1}.

Circles, how to find equations of circles when given equations of centres o...

how to find equations of circles when given equations of centres on which it lies?

Fenrir chain, Fenrir the wolf is bound by a magical chain. The chain is an ...

Fenrir the wolf is bound by a magical chain. The chain is an endless piece madr up of 30 links.Originally forged by 6 pieces , each made up of 5 links. It costs 2 silver coins to c

Tangents, find a common tangent to two circles

find a common tangent to two circles

Find the derivatives, Find the derivatives of the following functions a)...

Find the derivatives of the following functions a)      y = 5x 4 +3x -1-x 3 b)      y = (x+1) -1/2 c)      y= e x2+1 d)     y= e 3x lnx e)     y =ln(x+1/x)y

Variation of parameters, In this case we will require deriving a new formul...

In this case we will require deriving a new formula for variation of parameters for systems.  The derivation now will be much simpler than the when we first noticed variation of pa

Estimate round to the nearest tenth of an inch, One inch equals 2.54 centim...

One inch equals 2.54 centimeters. The dimensions of a table made in Europe are 85 cm huge by 120 cm long. What is the width of the table in inches? Round to the nearest tenth of an

What is exponents values, What is Exponents values? Exponents were inve...

What is Exponents values? Exponents were invented as a quick way to show that you are multiplying a number by itself several times. It's too much trouble to write something

Definition of a function, A function is a relation for which each of the va...

A function is a relation for which each of the value from the set the first components of the ordered pairs is related with exactly one value from the set of second components of t

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd