Area between two curves, Mathematics

Assignment Help:

Area between Two Curves

We'll start with the formula for finding the area among y = f(x) and y = g(x) on the interval [a,b].  We will also suppose that f(x) ≥ g(x) on [a,b].

Now we will precede much as we did while we looked that the Area Problem in the Integrals section. We will initially divide up the interval in n equal subintervals all with length,

Δx = (b -a)/n

After that, pick a point in all subinterval, xi*, and we can then use rectangles on each interval as given here,

2498_Area between Two Curves.png

The height of each of these rectangles is specified by,

f(xi*) - g(xi*)

and then the area of each rectangle is,

(f(xi*) - g(xi*)) Δx

Therefore, the area in between the two curves here is,

A ≈ 1189_Area between Two Curves 1.png(f(xi*) - g(xi*)) Δx

So exact area is,

A ≈limn→∞  1189_Area between Two Curves 1.png      (f(xi*) - g(xi*)) Δx

Then, recalling the definition of the definite integral it is nothing more than,

A = ab f(x) - g(x) dx

The formula beyond will work given the two functions are in the form y = f(x) and y = g(x).  Though, not all functions are in this form. At times we will be forced to work along with functions in the form among x = f(y) and x = g(y) on the interval [c,d] (an interval of y values...)

While this happens the derivation is the same Firstly we will begin by assuming that f(y) ≥ g(y) on [c,d]. We can after that divide up the interval in equal subintervals and build rectangles on each of such intervals. Now there is a sketch of above situation.

915_Area between Two Curves 2.png

Subsequent the work from above, we'll arrive at the subsequent for the area,

A = cd f(y) - g(y) dy

Therefore, regardless of the form such the functions are in we use fundamentally similar formula.


Related Discussions:- Area between two curves

Harmonic progression (h.p.), Three quantities a, b and c are said to ...

Three quantities a, b and c are said to be in harmonic progression if, In this case we observe that we have to consider three terms in o

Actual implicit solution, y 2 = t 2 - 3 is the actual implicit solution t...

y 2 = t 2 - 3 is the actual implicit solution to y'= t/y, y(2) = -1. At such point I will ask that you trust me that it is actually a solution to the differential equation. You w

The shortest distance between the line y-x=1 and curve x=y^2, Any point on ...

Any point on parabola, (k 2 ,k) Perpendicular distance formula: D=(k-k 2 -1)/2 1/2 Differentiating and putting =0 1-2k=0 k=1/2 Therefore the point is (1/4, 1/2) D=3/(32 1/2

Surds, solve for x: logx9

solve for x: logx9

Substitution, When I complete each of the three methods, should I get the s...

When I complete each of the three methods, should I get the same x and y values?

Find the area enclosed between two concentric circles, Find the area enclos...

Find the area enclosed between two concentric circles of radii 3.5cm, 7cm. A third  concentric circle is drawn outside the 7cm circle so that the area enclosed between it and the 7

Determine the circumference, If Gretta's bicycle has a 25-inch radius wheel...

If Gretta's bicycle has a 25-inch radius wheel, how far will she travel in two turns of the wheel? (π = 3.14) a. 491 in b. 78.5 in c. 100 in d. 157 in d. To determin

Find out the variance and standard deviation, The probability of a rare dis...

The probability of a rare disease striking a described population is 0.003. A sample of 10000 was examined. Determine the expected no. suffering from the disease and thus find out

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd