Area between two curves, Mathematics

Assignment Help:

Area between Two Curves

We'll start with the formula for finding the area among y = f(x) and y = g(x) on the interval [a,b].  We will also suppose that f(x) ≥ g(x) on [a,b].

Now we will precede much as we did while we looked that the Area Problem in the Integrals section. We will initially divide up the interval in n equal subintervals all with length,

Δx = (b -a)/n

After that, pick a point in all subinterval, xi*, and we can then use rectangles on each interval as given here,

2498_Area between Two Curves.png

The height of each of these rectangles is specified by,

f(xi*) - g(xi*)

and then the area of each rectangle is,

(f(xi*) - g(xi*)) Δx

Therefore, the area in between the two curves here is,

A ≈ 1189_Area between Two Curves 1.png(f(xi*) - g(xi*)) Δx

So exact area is,

A ≈limn→∞  1189_Area between Two Curves 1.png      (f(xi*) - g(xi*)) Δx

Then, recalling the definition of the definite integral it is nothing more than,

A = ab f(x) - g(x) dx

The formula beyond will work given the two functions are in the form y = f(x) and y = g(x).  Though, not all functions are in this form. At times we will be forced to work along with functions in the form among x = f(y) and x = g(y) on the interval [c,d] (an interval of y values...)

While this happens the derivation is the same Firstly we will begin by assuming that f(y) ≥ g(y) on [c,d]. We can after that divide up the interval in equal subintervals and build rectangles on each of such intervals. Now there is a sketch of above situation.

915_Area between Two Curves 2.png

Subsequent the work from above, we'll arrive at the subsequent for the area,

A = cd f(y) - g(y) dy

Therefore, regardless of the form such the functions are in we use fundamentally similar formula.


Related Discussions:- Area between two curves

Dividing fractions by fractions with drawing.., how do I divide a fraction ...

how do I divide a fraction by a fraction by drawing a picture

Tangents with polar coordinates - parametric equations, Tangents with Polar...

Tangents with Polar Coordinates Here we now require to discuss some calculus topics in terms of polar coordinates. We will begin with finding tangent lines to polar curves.

Fractions, how do you multiply fractions

how do you multiply fractions

Multistage sampling, Multistage sampling Multistage sampling is similar...

Multistage sampling Multistage sampling is similar to stratified sampling except division is done on geographical/location basis, for illustration a country can be divided into

First order linear differential equation, Newton's Second Law of motion, wh...

Newton's Second Law of motion, which recall from the earlier section that can be written as: m(dv/dt) = F (t,v) Here F(t,v) is the sum of forces which act on the object and m

Rejection and acceptance regions, Rejection and Acceptance regions All ...

Rejection and Acceptance regions All possible values which a test statistic may either suppose consistency along with the null hypothesis as acceptance region or lead to the re

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd