Area between two curves, Mathematics

Assignment Help:

Area between Two Curves

We'll start with the formula for finding the area among y = f(x) and y = g(x) on the interval [a,b].  We will also suppose that f(x) ≥ g(x) on [a,b].

Now we will precede much as we did while we looked that the Area Problem in the Integrals section. We will initially divide up the interval in n equal subintervals all with length,

Δx = (b -a)/n

After that, pick a point in all subinterval, xi*, and we can then use rectangles on each interval as given here,

2498_Area between Two Curves.png

The height of each of these rectangles is specified by,

f(xi*) - g(xi*)

and then the area of each rectangle is,

(f(xi*) - g(xi*)) Δx

Therefore, the area in between the two curves here is,

A ≈ 1189_Area between Two Curves 1.png(f(xi*) - g(xi*)) Δx

So exact area is,

A ≈limn→∞  1189_Area between Two Curves 1.png      (f(xi*) - g(xi*)) Δx

Then, recalling the definition of the definite integral it is nothing more than,

A = ab f(x) - g(x) dx

The formula beyond will work given the two functions are in the form y = f(x) and y = g(x).  Though, not all functions are in this form. At times we will be forced to work along with functions in the form among x = f(y) and x = g(y) on the interval [c,d] (an interval of y values...)

While this happens the derivation is the same Firstly we will begin by assuming that f(y) ≥ g(y) on [c,d]. We can after that divide up the interval in equal subintervals and build rectangles on each of such intervals. Now there is a sketch of above situation.

915_Area between Two Curves 2.png

Subsequent the work from above, we'll arrive at the subsequent for the area,

A = cd f(y) - g(y) dy

Therefore, regardless of the form such the functions are in we use fundamentally similar formula.


Related Discussions:- Area between two curves

Linear programming Special purpose of algorithm, the conclusion about stepp...

the conclusion about stepping stone method in real life situation?

Tangent lines, Tangent Lines : The first problem which we're going to stud...

Tangent Lines : The first problem which we're going to study is the tangent line problem.  Before getting into this problem probably it would be best to define a tangent line.

Area of a circle, There's a nice way to show why the expresion for the area...

There's a nice way to show why the expresion for the area of a circle of radius R is: Pi * R 2 . It has an comman relationship with the experation for the circumference of a

Solve 5x tan (8x ) =3x trig function, Solve 5x tan (8x ) =3x . Solution...

Solve 5x tan (8x ) =3x . Solution : Firstly, before we even begin solving we have to make one thing clear.  DO NOT CANCEL AN x FROM BOTH SIDES!!! Whereas this may appear like

Numerical methods, Consider the following interpolation problem: Find a q...

Consider the following interpolation problem: Find a quadratic polynomial p(x) such that p(x0) = y0 p’(x1) = y’1 , p(x2) = y2 where x0 is different from x2 and y0, y’1 , y2 a

Solution of rectilinear figures, A straight line AB on the side of a hill i...

A straight line AB on the side of a hill is inclined at 15.0° to the horizontal. The axis of a tunnel 486ft. long is inclined 28.6° below the horizontal lies in a vertical plane wi

Derivative problem, we know that derivative of x 2 =2x. now we can write x...

we know that derivative of x 2 =2x. now we can write x 2 as x+x+x....(x times) then if we take defferentiation we get 1+1+1+.....(x times) now adding we get x . then which is wro

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd