Arc length with vector functions - three dimensional space, Mathematics

Assignment Help:

Arc Length with Vector Functions

In this part we will recast an old formula into terms of vector functions.  We wish to find out the length of a vector function,

r (t) = {f (t), g(t) , h (t)}

on the interval a ≤ t ≤ b .

in fact we already know how to do this.  Remind that we can write the vector function into the parametric form,

 x = f (t)

 y = g(t)

z = h (t)

As well, remind that with two dimensional parametric curves the arc length is illustrated by,

L = ∫ba √ [f' (t)]2 + [g' (t)]2 dt

Here is a natural extension of this to three dimensions. Thus, the length of the curve r ?t ? on the interval a ≤ t ≤ b is,

L = ∫ba √ [f' (t)]2 + [g' (t)]2 + [h' (t)] dt

There is a good simplification which we can make for this.

Note: The integrand that is the function we're integrating is nothing much more than the magnitude of the tangent vector,

1226_Arc Length with Vector Functions - Three Dimensional Space.png

 Hence, the arc length can be written as,

L = ∫ba || r' (t)|| dt


Related Discussions:- Arc length with vector functions - three dimensional space

Properties of radicals, If n is positive integer greater than 1 and a & b b...

If n is positive integer greater than 1 and a & b both are positive real numbers then, Consider that on occasion we can let a or b to be negative and yet have these propert

Scatter graphs, Scatter Graphs - A scatter graph is a graph that compr...

Scatter Graphs - A scatter graph is a graph that comprises of points which have been plotted but are not joined through line segments - The pattern of the points will defin

What is the value of tan in terms of sin, What is the value of tan? in term...

What is the value of tan? in terms of sin?. Ans:    Tan ? = S i n ?/ C os ? Tan ? = S i n ? / √1 - S i n   2?

Differentials, Differentials : In this section we will introduce a nota...

Differentials : In this section we will introduce a notation. We will also look at an application of this new notation. Given a function y = f ( x ) we call dy & dx differen

Types of series - special series , Series - Special Series In this pa...

Series - Special Series In this part we are going to take a concise look at three special series.  In fact, special may not be the correct term.  All three have been named th

Fermats theorem, Fermat's Theorem  If f(x) has a relative extrema at x...

Fermat's Theorem  If f(x) has a relative extrema at x = c and f′(c) exists then x = c is a critical point of f(x). Actually, this will be a critical point that f′(c) =0.

Find the number of males and females in the village, The population of the ...

The population of the village is 5000.  If in a year, the number of males were to increase by 5% and that of a female by 3% annually, the population would grow to 5202 at the end o

.probability, a box contains 4 white and 6 green balls.Two balls are drawn ...

a box contains 4 white and 6 green balls.Two balls are drawn randomly with replacement.Show the probability on tree dig.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd