Arc length with vector functions - three dimensional space, Mathematics

Assignment Help:

Arc Length with Vector Functions

In this part we will recast an old formula into terms of vector functions.  We wish to find out the length of a vector function,

r (t) = {f (t), g(t) , h (t)}

on the interval a ≤ t ≤ b .

in fact we already know how to do this.  Remind that we can write the vector function into the parametric form,

 x = f (t)

 y = g(t)

z = h (t)

As well, remind that with two dimensional parametric curves the arc length is illustrated by,

L = ∫ba √ [f' (t)]2 + [g' (t)]2 dt

Here is a natural extension of this to three dimensions. Thus, the length of the curve r ?t ? on the interval a ≤ t ≤ b is,

L = ∫ba √ [f' (t)]2 + [g' (t)]2 + [h' (t)] dt

There is a good simplification which we can make for this.

Note: The integrand that is the function we're integrating is nothing much more than the magnitude of the tangent vector,

1226_Arc Length with Vector Functions - Three Dimensional Space.png

 Hence, the arc length can be written as,

L = ∫ba || r' (t)|| dt


Related Discussions:- Arc length with vector functions - three dimensional space

Function of a function, Function of a Function Suppose ...

Function of a Function Suppose y is a function of z,            y = f(z) and z is a function of x,            z = g(x)

Abstract algebra, How many homomorphism are there from z2 to z3. Zn is grou...

How many homomorphism are there from z2 to z3. Zn is group modulo n

Book 6b, one bathroom is 0.3m long how long is a row of 8 tiles

one bathroom is 0.3m long how long is a row of 8 tiles

Expertes, how to do multiplication

how to do multiplication

Discrete math, ) Show that the following argument is valid: (~p ? q) =>...

) Show that the following argument is valid: (~p ? q) => r s ? ~q ~t p => t (~p ? r) => ~s ------------------------ ? ~q 2) Show that the following argum

Squeeze theorem (sandwich theorem and the pinching theorem), Squeeze Theore...

Squeeze Theorem (Sandwich Theorem and the Pinching Theorem) Assume that for all x on [a, b] (except possibly at x = c ) we have,                                 f ( x )≤ h (

Math, A small square is located inside a bigger square. The length of the s...

A small square is located inside a bigger square. The length of the small square is 3 in. The length of the large square is 7m. What is the area of the big square if you take out t

Decimals, how do you turn a fraction into a decimals

how do you turn a fraction into a decimals

Limit, limit x APProaches infinity (1+1/x)x=e

limit x APProaches infinity (1+1/x)x=e

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd